精英家教网 > 初中数学 > 题目详情

已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,⊙O经过A、D两点且圆心O在AB上.求证:BC为⊙O的切线.

证明:连接OD,如右图所示,
∵OA=OD,
∴∠OAD=∠ODA,
又∵AD是∠BAC的角平分线,
∴∠BAD=∠CAD,
∴∠ODA=∠CAD,
∴OD∥AC,
又∵∠C=90°,
∴∠ODB=∠C=90°,
∴OD⊥BC,
∴BC是⊙O的切线.
分析:先连接OD,由于OA=OD,易得∠OAD=∠ODA,而AD是∠BAC的角平分线,那么∠BAD=∠CAD,等量代换可得∠ODA=∠CAD,利用内错角相等两直线平行可得OD∥AC,而∠C=90°,于是∠ODB=∠C=90°,从而可得OD⊥BC,即BC是⊙O的切线.
点评:本题考查了切线的判定、角平分线的定义、平行线的判定和性质.解题的关键是连接OD,并证明OD∥AC.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知在Rt△ABC中,∠ACB=90°,CD是AB上的中线,BC=2
5
,cos∠ACD=
2
3
,则CD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,那么BC=
8
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知在Rt△ABC中,∠C=90°,sinA=
513
,求tanB;
(2)如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.
(1)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;
(2)连接DE,当t为何值时,△DEF为直角三角形?
(3)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?

查看答案和解析>>

同步练习册答案