精英家教网 > 初中数学 > 题目详情
(2013•眉山)如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为
4
3
π
4
3
π
.(结果保留π)
分析:先根据三角形内角和定理得出∠ABC+∠ACB的度数,再由△OBD、△OCE是等腰三角形得出∠BDO+∠CEO的度数,由三角形内角和定理即可得出∠BOD+∠COD的度数,再根据扇形的面积公式即可得出结论.
解答:解:∵△ABC中,∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵△OBD、△OCE是等腰三角形,
∴∠BDO+∠CEO=∠ABC+∠ACB=120°,
∴∠BOD+∠COE=360°-(∠BDO+∠CEO)-(∠ABC+∠ACB)=360°-120°-120°=120°,
∵BC=4,
∴OB=OC=2,
∴S阴影=
120π×22
360
=
4
3
π.
故答案为:
4
3
π.
点评:本题考查的是扇形面积的计算,解答此类问题时往往用到三角形的内角和是180°这一隐藏条件,要求同学们掌握扇形的面积公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•眉山)如图,△ABC中,E、F分别是AB、AC上的两点,且
AE
EB
=
AF
FC
=
1
2
,若△AEF的面积为2,则四边形EBCF的面积为
16
16

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•眉山)如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•眉山)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:
①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2
其中正确的有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•眉山)如图,在函数y1=
k1
x
(x<0)和y2=
k2
x
(x>0)的图象上,分别有A、B两点,若AB∥x轴,交y轴于点C,且OA⊥OB,S△AOC=
1
2
,S△BOC=
9
2
,则线段AB的长度=
10
3
3
10
3
3

查看答案和解析>>

同步练习册答案