精英家教网 > 初中数学 > 题目详情

如图,矩形ABCD中,AB=1,BC=2,BC在x轴上.反比例函数数学公式的图象经过点A;一次函数y=kx-2的图象经过A、C两点,且与y轴交于点E.
(1)写出点E的坐标;
(2)求一次函数和反比例函数的解析式;
(3)根据图象写出当x>0时,一次函数值大于反比例函数值的x的取值范围.

解:(1)∵一次函数的解析式为y=kx-2,
∴当x=0时,y=k×0-2=-2,
∴点E的坐标为(0,-2);

(2)∵AB∥EO,


∴OC=4,
∴点C的坐标为(4,0),
把点C的坐标(4,0)代入y=kx-2,得
∴一次函数的解析式为
∵BC=2,
∴A点的坐标为(6,1),
把A点的坐标(6,1)代入,得m=6,
∴反比例函数的解析式为

(3)当x>0时,由图象可知:当x>6时,一次函数的值大于反比例函数的值.
分析:(1)根据一次函数y=kx-2的解析式可直接算出E点坐标;
(2)首先根据平行线分线段成比例定理可得,再代入相应线段长可算出CO的长,进而得到点C的坐标,把点C的坐标代入y=kx-2中即可得到一次函数的解析式;然后再算出A点的坐标,把A点的坐标(6,1)代入,得反比例函数的解析式;
(3)根据函数图象可以直接写出答案.
点评:此题主要考查了待定系数法求一次函数解析式与反比例函数解析式,以及平行线分线段成比例定理,解决问题的关键是算出OC的长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=6,BC=8,M是BC的中点,DE⊥AM,E是垂足,则△ABM的面积为
 
;△ADE的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AD=a,AB=b,要使BC边上至少存在一点P,使△ABP、△APD、△CDP两两相似,则a、b间的关系式一定满足(  )
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE,则∠CAE=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2008•怀柔区二模)已知如图,矩形ABCD中,AB=3cm,BC=4cm,E是边AD上一点,且BE=ED,P是对角线上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.则PF+PG的长为
3
3
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案