分析 (1)根据菱形的性质以及相似三角形的判定方法即可得到和GHC相似的三角形;
(2)根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得DH的长,在Rt△DHB中求出BH,然后得出AH,利用tan∠HAG的值,可得出GH的值.
解答 解:(1)△BOC∽△GHC,△GDO∽△GHC,
理由如下:
∵四边形ABCD是菱形,
∴BD⊥CD,
∴∠DOG=90°,
∵DH⊥BC于点H,
∴∠GHC=90°,
∵∠DGO=∠CGH,
∴△GDO∽△GHC;
(2)在菱形ABCD中,AC⊥BD,
∵AC=24cm,BD=18cm,
∴OA=$\frac{1}{2}$AC=$\frac{1}{2}$×16=8,OB=$\frac{1}{2}$BD=$\frac{1}{2}$×12=6cm,
在Rt△AOB中,AB=10cm,
∵DH⊥AB,
∴菱形ABCD的面积=$\frac{1}{2}$AC•BD=AB•DH,
即$\frac{1}{2}$×16×12=10•DH,
解得DH=9.6(cm).
在Rt△DHB中,BH═7.2cm,
则AH=AB-BH=10-7.2=2.8(cm),
∵tan∠HAG=$\frac{GH}{AH}$=$\frac{OB}{OA}$=$\frac{3}{4}$,
∴GH=$\frac{3}{4}$AH=2.1(cm).
点评 本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ac<bc | B. | c-a<c-b | C. | $\frac{a}{c}$$>\frac{b}{c}$ | D. | a+c<b+c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com