分析 由于∠BAC=90°,容易求证△ABO≌△CAD,利用全等三角形的性质即可求出点C的坐标.
解答 解:∵∠BAC=90°
∴∠BAO+∠CAD=∠CAD+∠ACD=90°,
∴∠BAO=∠ACD
在△ABO与△CAD中
$\left\{\begin{array}{l}{∠AOB=∠ADC}\\{∠BAO=∠ACD}\\{AB=AC}\end{array}\right.$
∴△ABO≌△CAD(AAS)
∴OB=AD
设OA=a,
∵B(0,3)
∴OB=3,
∴AD=3,
∴OD=a+3,CD=OA=a,
∴C(a+3,a)
又∵点C在反比例函数y=$\frac{10}{x}$上
∴10=a(a+3)
解得:a=2或a=-5,
∴C(5,2)
故答案为:(5,2)
点评 本题考查反比例函数图象上点的特征,解题的关键是证明△ABO≌△CAD,利用AD=OB=3求出点C的坐标,本题属于中等题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $2\sqrt{-8}=-2$ | B. | ${({-\sqrt{2}})^2}=4$ | C. | $\sqrt{{{({-3})}^2}}=-3$ | D. | $\sqrt{16}$=4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com