精英家教网 > 初中数学 > 题目详情

【题目】如图,直线y=﹣ x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣ x2+bx+c经过点A,B.

(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.
①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;
②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.

【答案】
(1)

解:∵y=﹣ x+c与x轴交于点A(3,0),与y轴交于点B,

∴0=﹣2+c,解得c=2,

∴B(0,2),

∵抛物线y=﹣ x2+bx+c经过点A,B,

,解得

∴抛物线解析式为y=﹣ x2+ x+2


(2)

解:①由(1)可知直线解析式为y=﹣ x+2,

∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,

∴P(m,﹣ m+2),N(m,﹣ m2+ m+2),

∴PM=﹣ m+2,PA=3﹣m,PN=﹣ m2+ m+2﹣(﹣ m+2)=﹣ m2+4m,

∵△BPN和△APM相似,且∠BPN=∠APM,

∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,

当∠BNP=90°时,则有BN⊥MN,

∴BN=OM=m,

= ,即 = ,解得m=0(舍去)或m=2,

∴M(2,0);

当∠NBP=90°时,则有 =

∵A(3,0),B(0,2),P(m,﹣ m+2),

∴BP= = m,AP= = (3﹣m),

= ,解得m=0(舍去)或m=

∴M( ,0);

综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2,0)或( ,0);

②由①可知M(m,0),P(m,﹣ m+2),N(m,﹣ m2+ m+2),

∵M,P,N三点为“共谐点”,

∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,

当P为线段MN的中点时,则有2(﹣ m+2)=﹣ m2+ m+2,解得m=3(三点重合,舍去)或m=

当M为线段PN的中点时,则有﹣ m+2+(﹣ m2+ m+2)=0,解得m=3(舍去)或m=﹣1;

当N为线段PM的中点时,则有﹣ m+2=2(﹣ m2+ m+2),解得m=3(舍去)或m=﹣

综上可知当M,P,N三点成为“共谐点”时m的值为 或﹣1或﹣


【解析】(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)①由M点坐标可表示P、N的坐标,从而可表示出MA、MP、PN、PB的长,分∠NBP=90°和∠BNP=90°两种情况,分别利用相似三角形的性质可得到关于m的方程,可求得m的值;②用m可表示出M、P、N的坐标,由题意可知有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,可分别得到关于m的方程,可求得m的值.
【考点精析】关于本题考查的线段的中点和相似三角形的判定与性质,需要了解线段的中点到两端点的距离相等;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B∠CAD⊥BC,垂足为DAE平分∠BAC

1)已知∠B=60°∠C=30°,求∠DAE的度数;

2)已知∠B=3∠C,求证:∠DAE=∠C

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 x轴的负半轴交于点A,与y轴交于点B,连结AB.点C 在抛物线上,直线AC与y轴交于点D.

(1)求c的值及直线AC的函数表达式;
(2)点P在x轴的正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m , 求AN的长(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.

(1)求抛物线的函数表达式;
(2)若点D是y轴上的一点,且以B,C,D为顶点的三角形与△ABC相似,求点D的坐标;
(3)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标及最大面积;

(4)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点P()在第一象限,则a的取值范围在数轴上表示正确的是

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,点 D 是边 BC 上的点(与 BC 两点不重合,过点 D DEACDFAB,分别交 ABAC EF 两点,下列说法正确的是(

A. AD 平分BAC,则四边形 AEDF 是菱形

B. BDCD,则四边形 AEDF 是菱形

C. AD 垂直平分 BC则四边形 AEDF 是矩形

D. ADBC则四边形 AEDF 是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

32(1)2

52()2

72()2;…

1)请你根据以上规律,写出第6个等式

2)第n个等式可以表示为 ,并请你证明你得到的等式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在7×7网格中,每个小正方形边长都为1.建立适当的平面直角坐标系,使点A34)、C42).

1)判断△ABC的形状,并求图中格点△ABC的面积;

2)在x轴上有一点P,使得PA+PC最小,则PA+PC的最小值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于任意实数 ,定义关于“ ”的一种运算如下: .例如:
(1)若 ,求 的值;
(2)若 ,求 的取值范围.

查看答案和解析>>

同步练习册答案