精英家教网 > 初中数学 > 题目详情
已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直精英家教网线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
分析:(1)在Rt△AOB中,根据AB的长和∠BOA的度数,可求得OA的长,根据折叠的性质即可得到OA=OC,且∠BOC=∠BOA=30°,过C作CD⊥x轴于D,即可根据∠COD的度数和OC的长求得CD、OD的值,从而求出点C的坐标.
(2)将A、C的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式.
(3)根据(2)所得抛物线的解析式可得到其顶点的坐标(即C点),设直线MP与x轴的交点为N,且PN=t,在Rt△OPN中,根据∠PON的度数,易得PN、ON的长,即可得到点P的坐标,然后根据点P的横坐标和抛物线的解析式可求得M点的纵坐标,过M作ME⊥CD(即抛物线对称轴)于E,过P作PQ⊥CD于Q,若四边形CDPM是等腰梯形,那么CE=QD,根据C、M、P、D四点纵坐标,易求得CE、QD的长,联立两式即可求出此时t的值,从而求得点P的坐标.
解答:解:(1)过点C作CH⊥x轴,垂足为H;
∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,
∴OB=4,OA=2
3

由折叠的性质知:∠COB=30°,OC=AO=2
3

∴∠COH=60°,OH=
3
,CH=3;
∴C点坐标为(
3
,3).
精英家教网
(2)∵抛物线y=ax2+bx(a≠0)经过C(
3
,3)、A(2
3
,0)两点,
3=3a+
3
b
0=12a+2
3
b

解得
a=-1
b=2
3

∴此抛物线的函数关系式为:y=-x2+2
3
x.

(3)存在.
∵y=-x2+2
3
x的顶点坐标为(
3
,3),
即为点C,MP⊥x轴,垂足为N,设PN=t;
∵∠BOA=30°,
∴ON=
3
t,
∴P(
3
t,t);
作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E;
把x=
3
t代入y=-x2+2
3
x,
得y=-3t2+6t,
∴M(
3
t,-3t2+6t),E(
3
,-3t2+6t),
同理:Q(
3
,t),D(
3
,1);
要使四边形CDPM为等腰梯形,只需CE=QD,
即3-(-3t2+6t)=t-1,
解得t=
4
3
,t=1(舍),
∴P点坐标为(
4
3
3
4
3
),
∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(
4
3
3
4
3
).
点评:此题主要考查了图形的旋转变化、解直角三角形、二次函数解析式的确定、等腰梯形的判定和性质等重要知识点,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M精英家教网.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)
,对称轴公式为x=-
b
2a

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉模拟)已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,以O 为原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标和过O、C、A三点的抛物线的解析式;
(2)P是此抛物线的对称轴上一动点,当以P、O、C为顶点的三角形是等腰三角形时,请直接写出点P的坐标;
(3)M(x,y)是此抛物线上一个动点,当△MOB的面积等于△OAB面积时,求M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•六盘水)已知.在Rt△OAB中,∠OAB=90°,∠BOA=30°,OA=2
3
,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求经过点O,C,A三点的抛物线的解析式.
(2)求抛物线的对称轴与线段OB交点D的坐标.
(3)线段OB与抛物线交与点E,点P为线段OE上一动点(点P不与点O,点E重合),过P点作y轴的平行线,交抛物线于点M,问:在线段OE上是否存在这样的点P,使得PD=CM?若存在,请求出此时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:第34章《二次函数》常考题集(23):34.4 二次函数的应用(解析版) 题型:解答题

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)求点C的坐标;
(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M.问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为,对称轴公式为x=-

查看答案和解析>>

同步练习册答案