精英家教网 > 初中数学 > 题目详情
如图,已知△ABC中,∠B=60°,AB=AC=4,过BC上一点D作PD⊥BC,交BA的延长线于点P,交AC于点Q,若CD=1,则PA=
2
2
分析:由△ABC中,∠B=60°,AB=AC=4,可证得△ABC是等边三角形,又由PD⊥BC,CD=1,易求得CQ的长与∠AQP=∠P=∠CQD=30°,继而可得PA=AQ=AC-CQ.
解答:解:∵△ABC中,∠B=60°,AB=AC=4,
∴△ABC是等边三角形,
∴∠C=∠BAC=∠B=60°,
∵PD⊥BC,
∴∠CQD=∠AQP=90°-∠C=30°,
∴∠P=∠BAC-∠AQP=60°-30°=30°,
∴∠P=∠AQP,
∴PA=QA,
在Rt△CDQ中,CQ=2CD=2×1=2,
∴QA=AC-CQ=4-2=2,
∴PA=2.
故答案为:2.
点评:此题考查了等边三角形的判定与性质、等腰三角形的判定与性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案