精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.

(1)求抛物线的解析式;
(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;
(3)P为y轴上一点,以B、C、F、P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;
(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.

【答案】
(1)

解:把点(﹣2,2),(4,5)代入y=ax2+c得 ,解得

所以抛物线解析式为y= x2+1;


(2)

解:BF=BC.

理由如下:

设B(x, x2+1),而F(0,2),

∴BF2=x2+( x2+1﹣2)2=x2+( x2﹣1)2=( x2+1)2

∴BF= x2+1,

∵BC⊥x轴,

∴BC= x2+1,

∴BF=BC;


(3)

解:如图1,

m为自然数,则点P在F点上方,

∵以B、C、F、P为顶点的四边形是菱形,

∴CB=CF=PF,

而CB=FB,

∴BC=CF=BF,

∴△BCF为等边三角形,

∴∠BCF=60°,

∴∠OCF=30°,

在Rt△OCF中,CF=2OF=4,

∴PF=CF=4,

∴P(0,6),

即自然数m的值为6;


(4)

解:作QE∥y轴交AB于E,如图2,

当k=1时,一次函数解析式为y=x+2,

解方程组 ,则B(1+ ,3+ ),

设Q(t, t2+1),则E(t,t+2),

∴EQ=t+2﹣( t2+1)=﹣ t2+t+1,

∴SQBF=SEQF+SEQB= (1+ )EQ= (1+ ))(﹣ t2+t+1)=﹣ (t﹣2)2+ +1,

当t=2时,SQBF有最大值,最大值为 +1,此时Q点坐标为(2,2).


【解析】(1)利用待定系数法求抛物线解析式;(2)设B(x, x2+1),而F(0,2),利用两点间的距离公式得到BF2=x2+( x2+1﹣2)2=,再利用配方法可得到BF= x2+1,由于BC= x2+1,所以BF=BC;(3)如图1,利用菱形的性质得到CB=CF=PF,加上CB=FB,则可判断△BCF为等边三角形,所以∠BCF=60°,则∠OCF=30°,于是可计算出CF=4,所以PF=CF=4,从而得到自然数m的值为6;(4)作QE∥y轴交AB于E,如图2,先解方程组 得B(1+ ,3+ ),设Q(t, t2+1),则E(t,t+2),则EQ=﹣ t2+t+1,则SQBF=SEQF+SEQB= (1+ )EQ= (1+ ))(﹣ t2+t+1),然后根据二次函数的性质解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.
(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);
①求此抛物线的表达式与点D的坐标;
②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;

(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD的顶点坐标为A(—5,1),B(—1,1), C(—1,6),D(—5,4),请作出四边形ABCD关于x轴及y轴的对称图形,并写出坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.
(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是

(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;

(3)如图3,当∠ADC=α时,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图:

运动项目

频数(人数)

羽毛球

30

篮球

a

乒乓球

36

排球

b

足球

12


请根据以上图表信息解答下列问题:
(1)频数分布表中的a= , b=
(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;
(3)全校有多少名学生选择参加乒乓球运动?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣ ,y1),(﹣ ,y2),(﹣ ,y3)是该抛物线上的点,则y1<y2<y3 , 正确的个数有(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=10,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.
(1)根据给出的信息,补全两幅统计图;
(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?
(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边三角形ABC中,BC=8,点D是边AB点,且BD=3,点P是边BC上一动点,作 °,PE交边AC于点E,当CE=时,满足条件的点P有且只有一个。

查看答案和解析>>

同步练习册答案