精英家教网 > 初中数学 > 题目详情

【题目】为了解初二学生参加户外活动的情况,某县教育局对其中500名初二学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如下统计图。(参加户外活动的时间分为四种类别:“0.5小时”,“1小时”,“1.5小时”,“2小时”)

请根据图示,回答下列问题:

(1)求学生每天户外活动时间的平均数,众数和中位数;

(2)该县共有12000名初二学生,请估计该县每天户外活动时间超过1小时的初二学生有多少人?

【答案】(1)平均数是1.24;众数:1;中位数:1;(2)该校每天户外活动时间超过1小时的学生有5280.

【解析】(1)根据条形图可得:户外活动的时间分分别为“0.5小时”,“1小时”,“1.5小时”,“2小时”的人数,然后根据平均数,众数和中位数的定义解答即可;(2)先求出500名该县每天户外活动时间超过1小时的初二学生所占的百分比,乘以12000即可.

(1)观察条形统计图,可知这组样本数据的平均数是:

则这组样本数据的平均数是1.24小时.

众数:1小时

中位数:1小时;

(2)被抽查的500名学生中,户外活动时间超过1小时的有220人,

所以 (人)

∴该校每天户外活动时间超过1小时的学生有5280.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解不等式组 请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得
(Ⅱ)解不等式②,得
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现在,苏宁商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.

(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?

(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?

(3)小张按合算的方案,把这台冰箱买下,如果商场还能盈利25%,这台冰箱的进价是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处。
1)求证:四边形AECF是平行四边形;
2)若AB=6AC=10,求四边形AECF的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形中ABCD,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.
(1)若四边形ABCD为正方形.
①如图1,请直接写出AE与DF的数量关系
②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;

(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表

测试序号

1

2

3

4

5

6

7

8

9

10

成绩(分)

7

6

8

7

7

5

8

7

8

7


(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S2=0.8、S2=0.4、S2=0.8)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表

售价x(元)

15

20

25

日销售量y(件)

25

20

15

若日销售量y是销售价x的一次函数.

(1)求出日销售量y(件)与销售价x(元)的函数关系式;

(2)求销售价定为30元时,每日的销售利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣4x﹣m2=0
(1)求证:该方程有两个不等的实根;
(2)若该方程的两个实数根x1、x2满足x1+2x2=9,求m的值.

查看答案和解析>>

同步练习册答案