精英家教网 > 初中数学 > 题目详情
如图,点P是∠AOB的角平分线上一点,过P作PC∥OA交OB于点C.若∠AOB=60°,OC=4,则点P到OA的距离PD等于
2
3
2
3
分析:过P作PM⊥OB于M,推出PD=PM,根据角平分线定义和平行线性质求出∠POC=∠CPO,推出OC=PC=4,求出∠CPM=30°,求出CM长,根据勾股定理求出PM即可.
解答:解:过P作PM⊥OB于M,
∵OP平分∠AOB,
∴∠AOP=∠BOP,
∵PC∥OA,
∴∠AOP=∠CPO,∠PCB=∠AOB=60°,
∴∠POC=∠CPO,∠MPC=90°-60°=30°,
∴PC=OC=4,
∵∠MPC=90°-60°=30°,
∴CM=
1
2
PC=2,
在△PCM中,由勾股定理得:PM=
PC2CM2
=2
3

∵OP平分∠AOB,PD⊥OA,PM⊥OB,
∴PD=PM=2
3

故答案为:2
3
点评:本题考查了等腰三角形性质,角平分线定义,平行线性质,勾股定理等知识点的运用,关键是综合运用这些性质进行推理,题目比较好,是一道综合性比较强的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

63、如图,点P是∠AOB的平分线上的一点,作PD⊥OA,垂足为D,PE⊥OB垂足为E,DE交OC于点F.则在图中:
(1)总共有
3
对全等三角形;
(2)总共
8
个直角.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.
求证:(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、作图题:如图,点P是∠AOB内一点.
(1)过点p画一条直线平行于BO;(2)过点P画一条直线垂直于AO.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是∠AOB内的一点,过点P作PC∥OB,PD∥OA,分别交OA、OB于点C、D,且PE⊥OA,精英家教网PF⊥OB,垂足分别为点E、F.
(1)求证:OC•CE=OD•DF;
(2)当点P位于∠AOB的什么位置时,四边形CODP是菱形并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P是∠AOB内部一点,点P关于OA、OB的对称点是H、G,直线HG交OA、OB于点C、D,若HG=4cm,且∠AOB=30°,则△HOG的周长是
12
12
cm.

查看答案和解析>>

同步练习册答案