【题目】如图,地面上两个村庄C、D处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN方向水平飞行,航线MN与C、D在同一铅直平面内.当该飞行器飞行至村庄C的正上方A处时,测得∠NAD=60°;该飞行器从A处飞行40分钟至B处时,测得∠ABD=75°.求村庄C、D间的距离(取1.73,结果精确到0.1千米)
科目:初中数学 来源: 题型:
【题目】某博物馆每周都吸引大量中外游客前来参观,如果游客过多,对馆中的珍贵文物会产生不利影响,但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入,因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系.在这种情况下,如果要保证每周万元的门票收入,那么每周应限定参观人数是多少?门票价格应是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.
(1)求证:DF⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形中,延长至使,以为边作正方形,延长交于,连接,,为的中点,连接分别与,交于点.则下列说法:①;②;③;④.其中正确的有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A的正前方60米处的C点,过了5秒后,测得小汽车所在的B点与车速检测仪A之间的距离为100米.
求BC间的距离;这辆小汽车超速了吗?请说明理由.
【答案】这辆小汽车没有超速.
【解析】
(1)根据勾股定理求出BC的长;
(2)直接求出小汽车的时速,进行比较得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB为斜边,根据勾股定理,得BC=80 m.
(2)这辆小汽车没有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴这辆小汽车没有超速.
【点睛】
考查勾股定理的应用,熟练掌握勾股定理是解题的关键.
【题型】解答题
【结束】
19
【题目】已知:如图,线段AC和BD相交于点G,连接AB,CD,E是CD上一点,F是DG上一点,,且.
求证:;若,,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(-,y1),C(-,y2)为函数图象上的两点,则y1<y2.其中正确结论是___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=8,点E、F分别在AD和AB上,AE=3,AF=4.
(1)点P在边BC上运动、四边形EFPH是平行四边形,连接DH.
①当四边形FPHE是菱形时,线段BP=_____;
②当点P在边BC上运动时,△DEH的面积会不会变化?若变化,求其最大值;若不变,求出它的值;
③当△DEH是等腰三角形时,求BP的长;
(2)若点E沿E-D-C向终点C运动,点F沿F-B-C终点C运动,速度分别为每秒3个单位长度和每秒4个单位长度,当其中一个点到达终点C时,另一个点也停止运动,求EF的中点O的运动路径长(要求写出简略的计算过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解下列方程
(1)25x2+10x+1=0(公式法) (2) 7x2 -23x +6=0;(配方法)
(3) (分解因式法) (4)x2-4x-396=0(适当的方法)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com