精英家教网 > 初中数学 > 题目详情
如图,已知OA⊥OB,OA=4,OB=3,以AB为边作矩形ABCD,使AD=a,过点D作DE垂直OA的延精英家教网长线交于点E.
(1)证明:△OAB∽△EDA;
(2)当a为何值时,△OAB与△EDA全等?请说明理由,并求出此时点C到OE的距离.
分析:(1)由于四边形ABCD是矩形,则∠BAD=90°,那么∠OBA、∠DAE同为∠BAO的余角,即∠OBA=∠DAE,而∠BOA、∠DEA都是直角,由此可证得△OAB∽△EDA.
(2)若△OAB与△EDA全等,则AB=AD,在Rt△OAB中,利用勾股定理易求得AB=5,那么a=AD=AB=5;
求C到OE的距离,可过C作CH⊥OE于H,过B作BF⊥CH于F;那么CH就是所求的距离,通过上面的解题思路,易证得△CBF≌△ABO,得CH=OA=4,BO=BF,那么四边形BOHF是正方形,由此可得FH=BO=3,根据CH=CF+FH即可求得C到OE的距离.
解答:精英家教网(1)证明:如图所示,
∵OA⊥OB,
∴∠1+∠2=90°,
又∵四边形ABCD是矩形,
∴∠BAD=90°,
∴∠2+∠3=90°,
∴∠1=∠3,(1分)
∵OA⊥OB,OE⊥OA,
∴∠BOA=∠DEA=90°,(2分)
∴△OAB∽△EDA.(3分)

(2)解:在Rt△OAB中,AB=
32+42
=5,(4分)
由(1)可知∠1=∠3,∠BOA=∠DEA=90°,
∴当a=AD=AB=5时,△AOB与△EDA全等.(5分)
当a=AD=AB=5时,可知矩形ABCD为正方形,
∴BC=AB,如图,过点C作CH⊥OE交OE于点H,
则CH就是点C到OE的距离,过点B作BF⊥CH交CH于点F,
精英家教网则∠4与∠5互余,∠1与∠5互余,
∴∠1=∠4,(6分)
又∵∠BFC=∠BOA,BC=AB,
∴△OAB≌△FCB(AAS),(7分)
∴CF=OA=4,BO=BF.
∴四边形OHFB为正方形,
∴HF=OB=3,
∴点C到OE的距离CH=CF+HF=4+3=7.(8分)
点评:此题主要考查了矩形、正方形的性质,相似三角形、全等三角形的判定和性质,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知OA=OB,数轴上点C表示的数是2,那数轴上线段AC的长度是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知OA=OB,那么数轴上点A与点C的距离是
 
个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知OA=OB,OC=OD,下列结论中(1)∠A=∠B;(2)DE=CE;(3)连OE,OE平分∠O,正确的有
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

同步练习册答案