精英家教网 > 初中数学 > 题目详情

如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于_______.

.

【解析】

试题分析:根据旋转的性质得到:,在中:EC=DC-DE=2,,根据勾股定理得到.

故答案为:.

考点:旋转的性质;勾股定理.

考点分析: 考点1:图形的平移与旋转 定义:
将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。 平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。 平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
3 平移的距离。(长度,如7厘米,8毫米等) 平移作用:
1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。 平移作图的步骤:
(1)找出能表示图形的关键点;
(2)确定平移的方向和距离;
(3)按平移的方向和距离确定关键点平移后的对应点;
(4)按原图的顺序,连结各对应点。 试题属性
  • 题型:
  • 难度:
  • 考核:
  • 年级:
练习册系列答案
相关习题

科目:初中数学 来源:2014-2015学年天津市和平区九年级下学期结课质量调查数学试卷(解析版) 题型:选择题

如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则=( )

(A) (B) (C) (D)

查看答案和解析>>

科目:初中数学 来源:2014-2015学年山东省枣庄市九年级3月测试数学试卷(解析版) 题型:解答题

(本题6分)如图所示,在⊙O中, =,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.

(1)求证:AC2=ABAF;

(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年山东省枣庄市九年级3月测试数学试卷(解析版) 题型:选择题

下列各式化简结果为无理数的是( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年山东省学业水平模拟考试数学试卷(解析版) 题型:解答题

(本小题满分8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的

(1)写出为负数的概率;

(2)求一次函数的图象经过二、三、四象限的概率。(用树状图或列表法求解)

查看答案和解析>>

科目:初中数学 来源:2014-2015学年山东省学业水平模拟考试数学试卷(解析版) 题型:选择题

如下图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ,在整个运动过程中,△MPQ的面积大小变化情况是( ).

A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小

查看答案和解析>>

科目:初中数学 来源:2014-2015学年山东省学业水平模拟考试数学试卷(解析版) 题型:选择题

下列运算正确的是( ).

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源:2014-2015学年山东省滕州市九年级学业水平考试模拟考数学试卷(解析版) 题型:填空题

如图,在中,边上的中线,,则的值为 .

查看答案和解析>>

科目:初中数学 来源:2014-2015学年辽宁省东港市九年级九校联考数学试卷(解析版) 题型:解答题

(14分)把两个全等的等腰直角三角形ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).

(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(要有辅助线哟!)

(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;

(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的,若存在,求出此时x值;若不存在,说明理由。

查看答案和解析>>

同步练习册答案