【题目】如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.
(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;
(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.
【答案】(1)20°,10°;(2)结论:α=2β,理由见解析.
【解析】
(1)根据∠BAD=∠BAC-∠DAE,∠AED=∠CDE+∠C,进行计算即可解决问题;
(2)α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°-y°,同理求出∠ACB=和∠AED=,利用外角定理得:β=∠AED-∠ACB,代入可得结论.
(1)∵AB=AC,
∴∠B=∠C=60°,
∴∠BAC=60°,
∵AD=AE,
∴∠ADE=∠AED=70°,
∴∠DAE=40°,
∴∠BAD=∠BAC-∠DAE=20°,
∵∠AED=∠CDE+∠C,
∴∠CDE=70°-60°=10°.
(2)结论:α=2β,理由是:
设∠BAC=x°,∠DAE=y°,则α=x°-y°,
∵∠ACB=∠ABC,
∴∠ACB=,
∵∠ADE=∠AED,
∴∠AED=,
∴β=∠AED-∠ACB=-==,
∴α=2β;
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=ax+b的图象与反比例函数y= 的图象交于第二、四象限内的A、B两点,与y轴交于C点,过A作AH⊥y轴于H,OH=3,tan∠AOH= ,点B的坐标为(m,﹣2).
(1)求△AHO的周长;
(2)求反比例函数和一次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为直线AB上一点,∠BOC=α.
(1)若α=40°,OD平分∠AOC,∠DOE=90°,如图(a)所示,求∠AOE的度数;
(2)若∠AOD=∠AOC,∠DOE=60°,如图(b)所示,请用α表示∠AOE的度数;
(3)若∠AOD=∠AOC,∠DOE=(n≥2,且n为正整数),如图(c)所示,请用α和n表示∠AOE的度数(直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图数轴上两点A、B所别应的分别为﹣3、1,点P在数轴上从点A出发以每秒钟2个单位的长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.
(1)直接写出线段AB的中点所对应的数及t秒后点P所对应的数.
(2)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;
(3)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度.并问此时数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小?若存在,直接写出点C所对应的数;若不存在,试说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD在平面直角坐标系的位置如图所示,将四边形ABCD先向下平移2个单位,再向左平移3个单位得到四边形A1B1C1D1,解答下列各题:
(1)请在图中画出四边形A1B1C1D1;
(2)请写出四边形A1B1C1D1的顶点B1、D1坐标;
(3)请求出四边形A1B1C1D1的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图①表示的是某商场2012年前四个月中两个月的商品销售额的情况,图②表示的是商场家电部各月销售额占商场当月销售总额的百分比情况,观察图①、图②解答下列问题:
(1)商场前四个月财务结算显示四月份商场的商品销售额比一月份下降了20%,请你求出商场四月份的销售额;
(2)若商场前四个月的商品销售总额一共是500万元,请你根据这一信息将图①中的统计图补充完整;
(3)小明观察图②后认为,商场家电部四月份的销售额比三月份减少了,你同意他的看法吗?请你说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(6,a),B(b,0),M(0,c),P点为y轴上一动点,且(b﹣2)2+|a﹣6|+=0.
(1)求点B、M的坐标;
(2)当P点在线段OM上运动时,试问是否存在一个点P使S△PAB=13,若存在,请求出P点的坐标与AB的长度;若不存在,请说明理由.
(3)不论P点运动到直线OM上的任何位置(不包括点O、M),∠PAM、∠APB、∠PBO三者之间是否都存在某种固定的数量关系,如果有,请利用所学知识找出并证明;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知 A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2.
求:(1)2A﹣3B.
(2)若|2x﹣3|=1,y2=9,|x﹣y|=y﹣x,求 2A﹣3B 的值.
(3)若 x=2,y=﹣4 时,代数式 ax3by+5=17,那么当 x=﹣4,y=﹣时,求代 数式 3ax﹣24by3+6 的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知正方形的边长为4,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2018次相遇在边 ( )上.
A. AB B. BC C. CD D. DA
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com