精英家教网 > 初中数学 > 题目详情
如图,已知AB=AC,CD⊥AB,BE⊥AC,垂足分别为点D、E,CD与BE相交于点F,求证:AF平分∠BAC.
分析:通过全等三角形的判定定理AAS证得△AEB≌△ADC,则对应边AE=AD;然后由HL推知Rt△ADF≌Rt△AEF,在对应角∠DAF=∠EAF,即AF平分∠BAC.
解答:证明:如图,∵CD⊥AB,BE⊥AC,
∴∠AEB=∠ADC=90°,
∴在△AEB与△ADC中,
∠AEB=∠ADC
∠EAB=∠DAC
AB=AC

∴△AEB≌△ADC(AAS),
∴AE=AD.
∴在Rt△ADF与Rt△AEF中,
AE=AD
AF=AF

∴Rt△ADF≌Rt△AEF(HL),
∴∠DAF=∠EAF,即AF平分∠BAC.
点评:本题考查了全等三角形的判定与性质.应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,则∠BFD的度数是(  )
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知AB=AC,D是BC的中点,E是AD上的一点,图中全等三角形有几对(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

26、如图,已知AB=AC,AD=AE.求证BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,已知AB=AC,AD=AE,BD=EC,则图中有
2
对全等三角形,它们是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步练习册答案