精英家教网 > 初中数学 > 题目详情
10.利用因式分解计算:
(1)21×3.14+62×3.14+17×3.14;
(2)7582-2582

分析 (1)通过其他公因数3.14进行因式分解;
(2)利用平方差公式进行因式分解.

解答 解:(1)原式=3.14(21+62+17)=3.14×100=314;

(2)原式=(758+258)(758-258)=1016×500=508000.

点评 本题考查了因式分解的应用.常利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.如图,在斜边长为1的等腰Rt△OAB中作内接正方形A1B1C1D1(正方形顶点都在△OAB边上),在等腰Rt△OA1B1中作内接正方形A2B2C2D2;在等腰Rt△OA2B2中,作内接正方形A3B3C3D3;…,依次作下去,则第5个正方形A5B5C5D5的边长为($\frac{1}{3}$)5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:
(1)|-3$\frac{8}{11}$|-|-$\frac{27}{10}$|+(-$\frac{9}{11}$)-(-3$\frac{4}{5}$)
(2)(+0.125)+(3$\frac{1}{4}$)+(-3$\frac{1}{8}$)+(11$\frac{2}{3}$)+0.25
(3)211×(-455)+365×455-211×545+545×365.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.张老师给爱好学习的小军和小俊提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD-PE=CF;
请运用上述解答中所积累的经验和方法完成下题:
【结论运用】如图④,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:
(1)b$\sqrt{\frac{3b}{a}}•\sqrt{\frac{3{a}^{2}}{b}}$=3b$\sqrt{a}$(a>0,b>0)
(2)$\frac{2\sqrt{{m}^{2}n}}{3\sqrt{mn}}$=$\frac{2\sqrt{m}}{3}$(m>0,n>0)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.计算:(0.125)2013(-8)2013=-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)6×(-2)2÷(-23
(2)(3×2)2+(-2)3×5-(-0.28)÷(-2)2
(3)$\frac{1}{(-0.1)^{3}}$-$\frac{1}{-0.{2}^{2}}$+|-23-3|-|-32-4|
(4)-32×1.22÷(-0.3)3+(-$\frac{1}{3}$)2×(-3)3÷(-1)25

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:-33-[-22+(1-0.2×$\frac{3}{5}$)÷(-2)].

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知$\frac{x}{y}$=$\frac{2}{7}$,求$\frac{{x}^{2}-3xy+2{y}^{2}}{2{x}^{2}-3xy+7{y}^{2}}$的值.

查看答案和解析>>

同步练习册答案