精英家教网 > 初中数学 > 题目详情

【题目】三张背面完全相同的卡片,它们的正面分别标有数字﹣1,0,1,将他们背面朝上,洗匀后随机抽取一张,把正面的数字作为b,接着再抽取一张,把正面的数字作为c,则满足关于x的一元二次方程x2+bx+c=0有实数根的概率是_____

【答案】

【解析】

首先根据列出可能情况,然后由所有等可能的结果以及满足关于x的一元二次方程x2+bx+c=0有实数根的情况数,再利用概率公式即可求得答案.

则共有6种等可能的结果(1,1),(1,0),(0,1),(0,1),(1,1),(1,0)

关于x的一元二次方程x2+bx+c=0有实数根,即△=b24c0

由树状图可得:满足△=b24c0的有4种情况:即(1,0),(0,1),(1,1),(1,0)

所以满足关于x的一元二次方程x2+bx+c=0有实数根的概率为:.

故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s(千米)与时间t()之间的关系可以用图中的折线表示.现有如下信息:

①小李到达离家最远的地方是14时;

②小李第一次休息时间是10时;

11时到12时,小李骑了5千米;

④返回时,小李的平均速度是10千米/.

其中,正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为

1)求袋中黄球的个数;

2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司计划从甲、乙两种产品中选择一种生产并销售每年产销x件.已知产销两种产品的有关信息如表

其中a为常数5≤a≤7.

(1)若产销甲、乙两种产品的年利润分别为万元、万元直接写出x的函数关系式(注年利润=总售价总成本每年其他费用

(2)分别求出产销两种产品的最大年利润

(3)为获得最大年利润该公司应该选择产销哪种产品?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD为⊙O的直径,点A是劣弧BC的中点,ADBC于点E,连结AB.

(1)求证:AB2=AE·AD;

(2)AE=2ED=4,求图中阴影的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】24如图,P是弧AB所对弦AB上一动点,过点PPCAB交弧AB于点C,取AP中点D,连接CD.已知AB=6cm,设AP两点间的距离为xcmCD两点间的距离为ycm.(当点P与点A重合时,y的值为0;当点P与点B重合时,y的值为3)

小凡根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.

下面是小凡的探究过程,请补充完整:

(1)通过取点、画图、测量,得到了xy的几组值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.2

   

3.2

3.4

3.3

3

(2)建立平面直角坐标系,描出补全后的表中各对对应值为坐标的点,画出该函数的图象;

(3)结合所画出的函数图象,解决问题:当∠C=30°时,AP的长度约为   cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2.

(1)求一次函数的解析式;

(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数yx的图象与反比例函数y的图象交于Aa,-2),B两点.

1)求反比例函数的表达式和点B的坐标;

2P是第一象限内反比例函数图象上一点,过点Py轴的平行线,交直线AB于点C,连接PO,若POC的面积为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明周末要乘坐公交车到植物园游玩,从地图上查找路线发现,几条线路都需要换乘一次.在出发站点可选择空调车A、空调车B、普通车a,换乘站点可选择空调车C,普通车b、普通车c,且均在同一站点换乘.空调车投币2元,普通车投币1元.

(1)求小明在出发站点乘坐空调车的概率;

(2)求小明到达植物园恰好花费3元公交费的概率.

查看答案和解析>>

同步练习册答案