【题目】如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连结AB.
(1)求证:AB2=AE·AD;
(2)若AE=2,ED=4,求图中阴影的面积.
【答案】(1)见解析;(2) 2π-3.
【解析】
(1)点A是劣弧BC的中点,即可得∠ABC=∠ADB,又由∠BAD=∠EAB,即可证得△ABE∽△ADB,根据相似三角形的对应边成比例,即可证得AB2=AEAD.
(2) 连结OA,由S阴影=S扇形AOB-S△AOB求出即可.
(1)证明:∵点A是劣弧BC的中点,
∴=
∴∠ABC=∠ADB.
又∵∠BAD=∠EAB,∴△ABE∽△ADB.
∴ .
∴AB2=AEAD.
(2)解:连结OA
∵AE=2,ED=4,
由(1)可知
∴AB2=AEAD,
∴AB2=AEAD=AE(AE+ED)=2×6=12.
∴AB=(舍负).
∵BD为⊙O的直径,
∴∠BAD=90°.
在Rt△ABD中,BD=
∴OB=.
∴OA=OB=AB=
∴△AOB为等边三角形
∴∠AOB=60°.
S阴影=S扇形AOB-S△AOB=
科目:初中数学 来源: 题型:
【题目】如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】交通安全是社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组的同学进行了测试汽车速度的实验.如图,先在笔直的公路1旁选取一点P,在公路1上确定点O、B,使得,米,.这时,一辆轿车在公路1上由B向A匀速驶来,测得此车从B处行驶到A处所用的时间为3秒,并测得此路段限速每小时80千米,试判断此车是否超速?请说明理由参考数据:,.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).
(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;
(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一次函数y=x的图像如图所示,它与二次函数y=ax2+2ax+c的图像交于A、B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点C.
(1)求点C的坐标;
(2)设二次函数图像的顶点为D.若点D与点C关于x轴对称,且△ACD的面积等于,求此二次函数的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】三张背面完全相同的卡片,它们的正面分别标有数字﹣1,0,1,将他们背面朝上,洗匀后随机抽取一张,把正面的数字作为b,接着再抽取一张,把正面的数字作为c,则满足关于x的一元二次方程x2+bx+c=0有实数根的概率是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF的延长线于点E,交AB的延长线于点D.
(1)求证:DE是⊙O的切线;
(2)若AE=3,DE=4,求⊙O的半径的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com