精英家教网 > 初中数学 > 题目详情

【题目】如图,ABO的直径,C、FO上两点,且点C为弧BF的中点,过点CAF的垂线,交AF的延长线于点E,交AB的延长线于点D

(1)求证DEO的切线;

(2)AE=3,DE=4,求O的半径的长.

【答案】(1)证明见解析;(2)⊙O的半径长为.

【解析】

1)连接OC,证OCAE,即可得出OCDE,根据切线判定推出即可.

2)证△OCD∽△ADE,即可求出DF

(1)连接

∵点C为弧BF的中点,

∴弧BC=CF.∴

AEDE

OCDE

DE是⊙O的切线.

(2)由勾股定理得AD=5,

D=D

∴△OCD∽△AED

解得r=

∴⊙O的半径长为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC交⊙O于点F

1ABAC的大小有什么关系?请说明理由;

2)若AB=8,∠BAC=45°,求:图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BD为⊙O的直径,点A是劣弧BC的中点,ADBC于点E,连结AB.

(1)求证:AB2=AE·AD;

(2)AE=2ED=4,求图中阴影的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2.

(1)求一次函数的解析式;

(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我国古代数学著作《九章算术》中记载了这样一个问题:今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?用现代语言表述为:如图,AB为⊙O的直径,弦CDAB于点EAE = 1寸,CD = 10寸,求直径AB的长.请你解答这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数yx的图象与反比例函数y的图象交于Aa,-2),B两点.

1)求反比例函数的表达式和点B的坐标;

2P是第一象限内反比例函数图象上一点,过点Py轴的平行线,交直线AB于点C,连接PO,若POC的面积为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班的各5名学生的成绩,它们分别为:

九(1)班 :96,92,94,97,96;

九(2)班 :90,98,97,98,92.

通过数据分析,列表如下:

班级

平均分

中位数

众数

九(1)班

95

a

96

九(2)班

95

97

b

(1)a= , b = ;

(2)计算两个班所抽取的学生艺术成绩的方差,判断哪个班学生的艺术成绩比较稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:

①当x3时,y0;②3a+b0;③﹣1a;④4ac﹣b28a;

其中正确的结论是(

A.①③④ B.①②③ C.①②④ D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应足球进校园的号召,我县教体局在今年 11 月份组织了县长杯校园足球比赛.在某场比赛中,一个球被从地面向上踢出,它距地面的高度 h(m)可用公式 h=﹣5t2+v0t 表示,其中 t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果足球的最大高度到 20m,那么足球被踢出时的速度应达到________m/s.

查看答案和解析>>

同步练习册答案