精英家教网 > 初中数学 > 题目详情

抛物线与x轴交与两点,
(1)求该抛物线的解析式;
(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

(1)y=-x2-2x+3;(2)Q(-1,2)

解析试题分析:(1)由题意把A(1,0)B(-3,0)代入到抛物线中即可求得结果;
(2)过B、C作直线BC与对称轴x=-1的交点就是Q点,设直线BC解析式为y=kx+b,把B(-3,0)C(0,3)代入得直线BC的解析式,令XQ=-1,得YQ=2,即可求得结果.
(1)把A(1,0)B(-3,0)代入到抛物线中得
,解得
∴抛物线的解析式为y=-x2-2x+3;
(2)存在。
过B、C作直线BC与对称轴x=-1的交点就是Q点,
设直线BC解析式为y=kx+b,把B(-3,0)C(0,3)代入得
,解得
∴y="x+3"
令XQ=-1,得YQ=2   
∴Q(-1,2).
考点:二次函数的性质
点评:二次函数的性质是初中数学的重点和难点,是中考常见题,一般难度不大,需熟练掌握.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

当x=2时,抛物线y=ax2+bx+c取得最小值-1,并且抛物线与y轴交于点C(0,3),与x轴精英家教网交于点A、B.
(1)求该抛物线的关系式;
(2)若点M(x,y1),N(x+1,y2)都在该抛物线上,试比较y1与y2的大小;
(3)D是线段AC的中点,E为线段AC上一动点(A、C两端点除外),过点E作y轴的平行线EF与抛物线交于点F.问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,则说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•邯郸一模)已知:如图,抛物线y=-x2+bx+c的图象经过点A(1,0),B (0,5)两点,该抛物线与x轴的另一交点为C.
(1)求这个抛物线的解析式和点C的坐标;
(2)在x轴上方的抛物线上有一动点D,其横坐标为m,设由A、B、C、D组成的四边形的面积为S.试求S与m的函数关系式,并说明m为何值时,S最大;
(3)P是线段OC上的一动点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,抛物线y=-x2+bx+c的图象经过点A(1,0),B (0,5)两点,该抛物线与x轴的另一交点为C.
(1)求这个抛物线的解析式和点C的坐标;
(2)在x轴上方的抛物线上有一动点D,其横坐标为m,设由A、B、C、D组成的四边形的面积为S.试求S与m的函数关系式,并说明m为何值时,S最大;
(3)P是线段OC上的一动点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:第2章《二次函数》中考题集(35):2.8 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(32):23.5 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,开口向上的抛物线与x轴交于A、B两点,D为抛物线的顶点,O为坐标原点.若OA、OB(OA<OB)的长分别是方程x2-4x+3=0的两根,且∠DAB=45°.
(1)求抛物线对应的二次函数解析式;
(2)过点A作AC⊥AD交抛物线于点C,求点C的坐标;
(3)在(2)的条件下,过点A任作直线l交线段CD于点P,若点C、D到直线l的距离分别记为d1、d2,试求的d1+d2的最大值.

查看答案和解析>>

同步练习册答案