精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.
(1)求n的值;
(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.
考点:旋转的性质,含30度角的直角三角形,直角三角形斜边上的中线,菱形的判定
专题:几何图形问题
分析:(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;
(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.
解答:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,
∴AC=DC,∠A=60°,
∴△ADC是等边三角形,
∴∠ACD=60°,
∴n的值是60;

(2)四边形ACFD是菱形;
理由:∵∠DCE=∠ACB=90°,F是DE的中点,
∴FC=DF=FE,
∵∠CDF=∠A=60°,
∴△DFC是等边三角形,
∴DF=DC=FC,
∵△ADC是等边三角形,
∴AD=AC=DC,
∴AD=AC=FC=DF,
∴四边形ACFD是菱形.
点评:此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知菱形ABCD中,∠ABC=60°,一条对角线长为6,则菱形的周长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的(  )
A、众数B、平均数
C、中位数D、方差

查看答案和解析>>

科目:初中数学 来源: 题型:

2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.
(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?
(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点E在DF上,点B在AC上,∠1=∠2,∠C=∠D.试说明:AC∥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)在给定方格纸中画出平移后的△A′B′C′;
利用网格点和三角板画图或计算:
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

先化简,再求值:
2x2
x2-1
-
x
x+1
,其中x=-
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

分解因式:
(1)16x2-49y2;                          
(2)-27x4+18x3-3x2
(3)4x(m-1)-8y(1-m);                   
(4)(m2-3)2+4(m2-3)+4.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:△PCF是等腰三角形;
(3)若tan∠ABC=
4
3
,BE=7
2
,求线段PC的长.

查看答案和解析>>

同步练习册答案