精英家教网 > 初中数学 > 题目详情
15.如图,△ABC中,∠B,∠C的平分线交于O点,过O点作EF∥BC交AB,AC于E,F.

(1)如图①,当AB=AC时,图中有5个等腰三角形.
(2)如图②,写出EF与BE、CF之间关系式,并说明理由.
(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F. EF与BE、CF关系又如何?说明你的理由.

分析 (1)由AB=AC,可得∠ABC=∠ACB;又已知OB、OC分别平分∠ABC、∠ACB;故∠EBO=∠OBC=∠FCO=∠OCB;根据EF∥BC,可得∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO;由此可得出△ABC,△OBC,△EBO,△CFO,△AEF都是等腰三角形;
(2)由EF∥BC,可得∠2=∠3,又∠1=∠2,根据等量代换得到∠1=∠3,所以OE=BE,在△CFO中,同理可证OF=CF,继而可证得EF=BE+CF;
(3)由于OE∥BC,可得∠5=∠6,又∠4=∠5,根据等量代换得到∠4=∠6,所以OE=BE,在△CFO中,同理可证OF=CF,继而可证得EF=BE-CF.

解答 解:(1)当AB=AC时,图中有5个等腰三角形.
如图1,由AB=AC,可得∠ABC=∠ACB,
又∵OB、OC分别平分∠ABC、∠ACB,
∴∠EBO=∠OBC=∠FCO=∠OCB,
根据EF∥BC,可得∠OEB=∠OBC=∠EBO,∠FOC=∠FCO=∠BCO,
由此可得出△ABC,△OBC,△EBO,△CFO,△AEF都是等腰三角形.
故答案为:5;

(2)关系式:EF=BE+CF
如图,∵EF∥BC,
∴∠2=∠3,
又∵∠1=∠2,
∴∠1=∠3,
∴OE=BE,
在△CFO中,同理可证OF=CF,
∵EF=EO+FO,
∴EF=BE+CF;

(3)关系式:EF=BE-CF
如图,∵OE∥BC,
∴∠5=∠6,
又∠4=∠5,
∴∠4=∠6,
∴OE=BE,
在△CFO中,同理可证OF=CF,
∵EF=EO-FO,
∴EF=BE-CF.

点评 本题考查了等腰三角形的判定与性质,解决问题的关键灵活运用等腰三角形的性质.解题时注意:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.《西游记》“三打白骨精”中,唐僧冤枉了孙悟空,念起了紧箍咒,疼的孙悟空抱头打滚.假如唐僧念的咒语使悟空头上的紧箍咒缩了1cm,假设紧箍咒是圆形,那么紧箍咒的半径缩短了$\frac{1}{2π}$cm.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.写出同时具备下列两个条件:(1)y随着x的增大而减小;(2)图象经过点(0,-3)的一次函数表达式:(写出一个即可)y=-x-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.将二次函数y=-2x2+6x-5化为y=a(x-h)2+k的形式,则 y=-2(x-$\frac{3}{2}$)2-$\frac{1}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.若x≥y≥z,则(2x+1)(2y+1)(2z+1)=13xyz的正整数解(x,y,z)为(45,7,1)或(19,9,1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.为了改善小区环境,某小区决定要在一块一边靠墙(墙的最大可用长度为10米)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40米的栅栏围住(如图).若设绿化带的BC边长为x米,绿化带的面积为y平方米.
(1)求y与x之间的函数关系式及自变量的x的取值范围.
(2)栅栏BC为多少米时,花圃的面积最大?最大面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.若代数式$\frac{(x-2)(x+1)}{|x|-1}$的值为零,则x的取值范围为(  )
A.x=2或x=-1B.x=-1C.x=±2D.x=2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.已知二次函数y=ax2-4x+13a有最小值-24,则a=$\frac{2}{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.用“>”或“<”填空.
(1)-3.14<-3           
(2)+$\frac{4}{5}$>$\frac{3}{4}$
(3)-$\frac{1}{2}$<+$\frac{1}{3}$              
(4)-100<0.

查看答案和解析>>

同步练习册答案