精英家教网 > 初中数学 > 题目详情
21、已知△ABC中∠BAC=30°,∠ABC=80°,在△ABC内取一点K,使△BCK为正三角形,求∠KAC的度数.
分析:作△ABC的外接圆圆O,作BC的垂直平分线EF,则EF过O点,连接OB、0C,推出∠BOC=∠BKC,进而推出K和O重合,即K点是△ABC的外心,即KA=KC,由三角形的内角和定理和等边三角形求出∠ACK的度数即可求出答案.
解答:解:作△ABC的外接圆圆O,作BC的垂直平分线EF,则EF过O点,连接OB、0C,

∵∠A=30°,∠B=80°
∴∠ACB=180°-30°-80°=70°
∵∠A=30°,
∴∠BOC=2∠BAC=60°,
∵△BCK为正三角形,
∴∠KCB=∠BKC=60°,BK=CK,
∴∠BOC=∠BKC
∴K也在EF上,且和O都在△ABC内,
∴K、O重合,
即K是△ABC的外接圆是圆心,
∴KA=KB=KC,
∠KAC=∠ACK=70°-60°=10°.
点评:本题主要考查了三角形的外接圆和外心,等边三角形的性质,三角形的内角和定理,圆周角定理等知识点,作△ABC的外接圆和证K和O重合是解题的关键.难点是正确作辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,∠C=90°,BA=15,AC=12,以直角边BC为直径作半圆,则这个半圆的面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知△ABC中,∠C=90°,AC=
11
,BC=5,以c为圆心,BC为半径作圆交BA的延长线于D,则AD的长为(  )
A、
3
7
B、
5
7
C、
7
3
D、
5
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•六盘水)如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:

(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如图2,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC中,AB=AC,点M为BC的中点,MG⊥BA于G,MD⊥AC于D,GF⊥AC于点F,DE⊥AB于点E,GF与DF相交于点F.试说明四边形HGMD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,∠B=60°,AB=AC=4,过BC上一点D作PD⊥BC,交BA的延长线于点P,交AC于点Q,若CD=1,则PA=
2
2

查看答案和解析>>

同步练习册答案