精英家教网 > 初中数学 > 题目详情
如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.
(1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK
 
MK(填“>”,“<”或“=”);
②如图4,当∠CDF=30°时,AM+CK
 
MK(只填“>”或“<”);
(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK
 
MK,证明你所得到的结论;
(3)如果MK2+CK2=AM2,请直接写出∠CDF的度数和
MKAM
的值.
精英家教网
分析:(1)先证明△CDA是等腰三角形,再根据等腰三角形的性质证明AM+CK=MK;在△MKD中,AM+CK>MK(两边之和大于第三边);
(2)作点C关于FD的对称点G,连接GK,GM,GD.证明△ADM≌△GDM后,根据全等三角形的性质,GM=AM,GM+GK>MK,∴AM+CK>MK;
(3)根据勾股定理的逆定理求得∠GKM=90°,又∵点C关于FD的对称点G,∴<CKG=90°,<FKC=
1
2
<CKG=45°,根据三角形的外角定理,就可以求得∠CDF=15°;在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,∴∠GMK=30°,利用余弦定理解得
MK
AM
=
3
2
解答:解:(1)①在Rt△ABC中,D是AB的中点,
∴AD=BD=CD=
1
2
AB
,∠B=∠BDC=60°
又∵∠A=30°,
∴∠ACD=60°-30°=30°,
又∵∠CDE=60°,或∠CDF=60°时,
∴∠CKD=90°,
∴在△CDA中,AM(K)=CM(K),即AM(K)=KM(C)(等腰三角形底边上的垂线与中线重合),
∵CK=0,或AM=0,
∴AM+CK=MK;(2分)
②由①,得
∠ACD=30°,∠CDB=60°,
又∵∠A=30°,∠CDF=30°,∠EDF=60°,
∴∠ADM=30°,
∴AM=MD,CK=KD,
∴AM+CK=MD+KD,
∴在△MKD中,AM+CK>MK(两边之和大于第三边).(2分)

(2)>(2分)
证明:作点C关于FD的对称点G,
连接GK,GM,GD,
则CD=GD,GK=CK,∠GDK=∠CDK,
∵D是AB的中点,∴AD=CD,
∴GD=AD.∠DAC=∠DCA=30°,
∴∠CDA=120°,
∵∠EDF=60°,∴∠GDM+∠GDK=60°,
∠ADM+∠CDK=60°.精英家教网
∴∠ADM=∠GDM,(3分)
∵DM=DM,
AD=DG
∠ADM=∠GDM
DM=DM

∴△ADM≌△GDM,(SAS)
∴GM=AM.
∵GM+GK>MK,∴AM+CK>MK.(1分)

(3)由(2),得GM=AM,GK=CK,
∵MK2+CK2=AM2
∴MK2+GK2=GM2
∴∠GKM=90°,
又∵点C关于FD的对称点G,
∴∠CKG=90°,∠FKC=
1
2
∠CKG=45°,
又由(1),得∠A=∠ACD=30°,
∴∠FKC=∠CDF+∠ACD,
∴∠CDF=∠FKC-∠ACD=15°,
在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,
∴∠GMK=30°,
MK
GM
=
3
2

MK
AM
=
3
2

综上可得:∠CDF的度数为15°,
MK
AM
的值为
3
2
点评:本题综合考查了全等三角形的判定、全等三角形的性质、轴对称图形的性质以及三角形的两边之和大于第三边的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,在Rt△ABC中,∠BAC=90°,AB=6,AM为∠BAC的平分线,CM=2BM.下列结论:
①tan∠MAC=
2
2
;②点M到AB的距离是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2

其中不正确结论的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为
2
π
π
2
π
π
(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,则AB的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•嘉定区二模)如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,且BC2=CD•CA.
(1)求证:∠A=∠CBD;
(2)当∠A=α,BC=2时,求AD的长(用含α的锐角三角比表示).

查看答案和解析>>

同步练习册答案