分析:(1)根据圆的任意一条弦都小于或等于圆的直径解答;
(2)①设直线与圆相切于点M,连接O1M,则O1M⊥l,过点O1作直线NH⊥x轴,与l交于点N,与x轴交于点H,因为直线的k=1,所以直线与x轴的夹角等于45°,△OMN是等腰直角三角形,点N的坐标即可表示出来,再把点N的坐标代入直线解析式,即可求出b值;
②利用反比例函数图象关于直线y=x对称,作直线y=x的图象与圆有两交点,根据直线与x轴的夹角是45°,用圆的半径表示出两个交点坐标,分别代入反比例函数表达式求出k的值,k的取值就在这两个数值之间.
解答:(1)证明:∵l
1≤2R,l
2≤2R,l
3≤2R,
∴l
1+l
2+l
3≤3×2R<π×2R=C,(2分)
因此,l
1+l
2+l
3<C.(3分)
(2)解:①如图,根据题意可知⊙O
1与x轴,y轴分别相切,
设直线l与⊙O
1相切于点M,
则O
1M⊥l,过点O
1作直线NH⊥x轴,与l交于点N,与x轴交于点H,
又∵直线l与x轴,y轴分别交于点E(-b,0),F(0,b),
∴OE=OF=b,
∴∠NEO=45°,
∴∠ENO
1=45°,
∴∠NO
1M=45°,
在Rt△O
1MN中,O
1N=O
1M÷sin45°=
R.
∴点N的坐标为N(R,
R+R),(4分)
把点N坐标代入y=x+b得:
R+R=R+b,
解得:b=
R.(5分)
②如图,设经过点O,O
1的直线交⊙O
1于点A,D,则由已知,直线OO
1;
y=x是圆与反比例函数图象的对称轴,当反比例函数y=
的图象与⊙O
1直径AD相交时(点A,D除外),
则反比例函数y=
的图象与⊙O
1有两个点.
过点A作AB⊥x轴交x轴于点B,过O
1作O
1C⊥x轴于点C,
OO
1=O
1C÷sin45°=
R,OA=
R+R,
所以OB=AB=OA•sina45°=(
R+R)•
=R+
R,
因此点A的坐标是A(R+
R,R+
R),
将点A坐标代入y=
,
解得:k=(
+
)R
2;(6分)
同理可求得点D的坐标为D(R-
R,R-
R),
将点D的坐标代入y=
,解得:k=(
-
)R
2(7分)
所以当反比例函数y=
(k>0)的图象与⊙O
1有两个交点时,
k的取值范围是:(
-
)R
2<k<(
+)R
2.(8分)
点评:本题考查:(1)直径是圆中最长的弦,其它任意弦都小于或等于圆的直径;
(2)一次函数图象的性质和反比例函数图象的性质,结合圆的特点直线的k等于1时与x轴的夹角等于45°是解本题的关键,也是解决本题的突破口.