精英家教网 > 初中数学 > 题目详情
(2013•甘井子区二模)在?ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;
(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);
(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.
分析:(1)首先作∠GAH=∠EAB交GE于点H,易证得△ABG≌△AEH,又由∠EAB=60°,可证得△AGH是等边三角形,继而证得结论;
(2)首先作∠GAH=∠EAB交GE于点H.作AM⊥EG于点M,易证得△ABG≌△AEH,又由∠EAB=α,易得GM=MH=AG•sin
α
2
,继而证得结论;
(3)首先作∠GAH=∠EAB交GE于点H,易证得△ABG≌△AEH,继而可得△AGH是等腰直角三角形,则可求得答案.
解答:(1)证明:如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
∠GAB=∠HAE
AB=AE
∠ABG=∠AEH

∴△ABG≌△AEH(ASA).
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=60°,
∴△AGH是等边三角形.
∴AG=HG.
∴EG=AG+BG.

(2)如图,作∠GAH=∠EAB交GE于点H.作AM⊥EG于点M,
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
∠GAB=∠HAE
AB=AE
∠ABG=∠AEH

∴△ABG≌△AEH(ASA).
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=α,
∴GM=MH=
1
2
GH,∠GAM=∠HAM=
1
2
α,
∵GM=MH=AG•sin
α
2

∴EG=GH+BG.
EG=2AGsin
α
2
+BG


(3)EG=
2
AG-BG

如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE.
∵∠EGB=∠EAB=90°,
∴∠ABG+∠AEG=∠AEG+∠AEH=180°.
∴∠ABG=∠AEH.
∵又AB=AE,
∴△ABG≌△AEH.
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=90°,
∴△AGH是等腰直角三角形.
2
AG=HG.
EG=
2
AG-BG
点评:此题考查了平行四边形的性质、矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰直角三角形的性质以及三角函数等知识.此题综合性较强,难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•甘井子区二模)在函数y=
2x-3
中,自变量x的取值范围是
x≥
3
2
x≥
3
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•甘井子区二模)如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为
8a
8a

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•甘井子区一模)已知关于x的方程x2+mx-6=0的一个根为2,则m=
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•甘井子区二模)对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则可列方程为
289(1-x)2=256
289(1-x)2=256

查看答案和解析>>

同步练习册答案