精英家教网 > 初中数学 > 题目详情

【题目】合作探究:你了解吗?骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,观察图象回答下列问题:
(1)一天中,骆驼的体温的变化范围是 , 它的体温从最低上升到最高需要时.
(2)从16时到24时,骆驼的体温下降了度.
(3)从时到时,骆驼的体温在上升,从时到时,从 时到时骆驼的体温在下降.
(4)你能看出第二天8时骆驼的体温与第一天8时的体温的关系是
(5)A点表示的是 , 还有时的温度与A点所表示的温度相同?

【答案】
(1)35°~40°;12
(2)3
(3)4或28;12或40;37或12;4或28;40;48
(4)相同
(5)12时的体温;44
【解析】解:(1)一天中,骆驼的体温的变化范围是35°~40°,它的体温从最低上升到最高需要12时.(2)从16时到24时,骆驼的体温下降了3度.(3)从4或28时到12或40时,骆驼的体温在上升,从37或12时到4或28时,从40时到48时骆驼的体温在下降.(4)你能看出第二天8时骆驼的体温与第一天8时的体温的关系是相同.(5)A点表示的是12的温度,还有44时的温度与A点所表示的温度相同. 所以答案是:35°~40°,12,16时到24,3,4或28,12或40,37或12,4或28,40时到48,相同,12,44.
【考点精析】掌握函数的图象是解答本题的根本,需要知道函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BC,点DBC边上(BC点除外)的动点,∠EDF的两边与ABAC分别交于点EF,且BDCFBECD.

(1)求证:DEDF

(2)若∠EDFm,用含m的代数式表示∠A的度数;

(3)连接EF,求当△DEF为等边三角形时∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A—C—B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1 , C2两段组成,如图2所示.

(1)求a的值;
(2)求图2中图象C2段的函数表达式;
(3)当点P运动到线段BC上某一段时△APQ的面积,大于当点P在线段AC上任意一点时△APQ的面积,求x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCADE中,∠BAD=CAEABC=ADE

(1)求证:ABC∽△ADE

(2)判断ABDACE是否相似?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4cmAD=12cmP点在AD边上以每秒1cm的速度从AD运动,点QBC边上,以每秒4cm的速度从C点出发,在CB间往返运动,二点同时出发,待P点到达D点为止,在这段时间内,线段PQ有( )次平行于AB

A1 B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,BC∥OA,∠B=∠A=100°,试回答下列问题:
(1)如图①,求证:OB∥AC.
(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于;(在横线上填上答案即可).
(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,求∠OCA度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,从点P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次扩展下去,则P2017的坐标为( )

A.(504,﹣504)
B.(﹣504,504)
C.(﹣504,503)
D.(﹣505,504)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l上依次有三点A、B、C,且AB=8、BC=16,点P为射线AB上一动点,将线段AP进行翻折得到线段PA′(点A落在直线l上点A′处、线段AP上的所有点与线段PA′上的点对应).

(1)若翻折后A′C=2,则翻折前线段AP=  

(2)若点P在线段BC上运动,点M为线段A′C的中点,直接写出线段PM的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习有理数的乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:

小明:原式=﹣×5=﹣=﹣249

小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249

(1)对于以上两种解法,你认为谁的解法较好?

(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;

(3)用你认为最合适的方法计算:19×(﹣8)

查看答案和解析>>

同步练习册答案