精英家教网 > 初中数学 > 题目详情
11.已知:如图所示,四边形ABCD中,∠ABC=∠ADC=90°,M是AC上任一点,O是BD的中点,连接MO,并延长MO到N,使NO=MO,连接BN与ND.
(1)判断四边形BNDM的形状,并证明;
(2)若M是AC的中点,则四边形BNDM的形状又如何?说明理由.

分析 (1)由对角线互相平分的四边形是平行四边形即可得出结论;
(2)由直角三角形斜边上1的中线性质得出BM=$\frac{1}{2}$AC,DM=$\frac{1}{2}$AC,得出BM=DM,即可得出结论.

解答 (1)解:四边形BNDM是平行四边形,理由如下:
∵O是BD的中点,
∴OB=OD,
∵NO=MO,
∴四边形BNDM是平行四边形;
(2)解:四边形BNDM是菱形;理由如下:
∵∠ABC=∠ADC=90°,M是AC的中点,
∴BM=$\frac{1}{2}$AC,DM=$\frac{1}{2}$AC,
∴BM=DM,
∴四边形BNDM是菱形.

点评 本题考查了平行四边形的判定方法、直角三角形斜边上的中线性质、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.三角形的三边a、b、c满足a(b-c)+2(b-c)=0,则这个三角形的形状是(  )
A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.配方法:x2+6x+4=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.(-8)2014+(-8)2013能被下列数整除的是(  )
A.3B.5C.7D.9

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.家住上海的童童早早吃完晚饭从家出发前往大剧院观看演唱会,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至大剧院观看演唱会,演唱会结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图能反映y与x的函数关系式的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知P(3,a-2),且P到两坐标轴的距离相等,则点P的坐标(3,3)或(3,-3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.在平面直角坐标系中,横坐标与纵坐标都为整数的点叫整点,动点P从原点O出发,运动速度为每秒1个单位长度,规定P只能向上或向右运动,请回答下列问题:
(1)填表
运动时间(秒)可得到的整点坐标整点个数
t=1(0,1)、(1,0)2
t=2(0,2)、(2,0)、(1,1)3
t=3(0,3)、(3,0)、(2,1)、(1,2)4
(2)当t=12时,整点有13个;
(3)当t=15时,可得到整点(8,7);
(4)当t=m+n时,可得到整点(m,n).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,则至少要答对12道题,其得分才会不少于80分?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.在发生“甲型H7N9禽流感”疫情期间,有专业机构认为在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是(  )
A.甲地:总体平均数为3,中位数为4
B.乙地:中位数为2,众数为3
C.丙地:总体平均数为2,总体方差为3
D.丁地:总体平均数为1,总体方差大于0

查看答案和解析>>

同步练习册答案