分析 (1)由对角线互相平分的四边形是平行四边形即可得出结论;
(2)由直角三角形斜边上1的中线性质得出BM=$\frac{1}{2}$AC,DM=$\frac{1}{2}$AC,得出BM=DM,即可得出结论.
解答 (1)解:四边形BNDM是平行四边形,理由如下:
∵O是BD的中点,
∴OB=OD,
∵NO=MO,
∴四边形BNDM是平行四边形;
(2)解:四边形BNDM是菱形;理由如下:
∵∠ABC=∠ADC=90°,M是AC的中点,
∴BM=$\frac{1}{2}$AC,DM=$\frac{1}{2}$AC,
∴BM=DM,
∴四边形BNDM是菱形.
点评 本题考查了平行四边形的判定方法、直角三角形斜边上的中线性质、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 运动时间(秒) | 可得到的整点坐标 | 整点个数 |
| t=1 | (0,1)、(1,0) | 2 |
| t=2 | (0,2)、(2,0)、(1,1) | 3 |
| t=3 | (0,3)、(3,0)、(2,1)、(1,2) | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 甲地:总体平均数为3,中位数为4 | |
| B. | 乙地:中位数为2,众数为3 | |
| C. | 丙地:总体平均数为2,总体方差为3 | |
| D. | 丁地:总体平均数为1,总体方差大于0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com