精英家教网 > 初中数学 > 题目详情

如图,已知△ABC中,AB=AC,∠A<90°,CD、BE分别为△ABC的中线,AF⊥CD,AG⊥BE,分别交CD、BE的延长线于F、G两点,试问:
(1)AF与AG相等吗?为什么?
(2)当∠A=90°时,其余条件不变,猜想AF________AG(用>,=,<填空).
(3)当∠A>90°时,其余条件不变,猜想AF________AG(用>,=,<填空).
(4)通过本题,你可以得到怎样的结论?请用文字叙述.

解:(1)AF=AG.理由如下:
∵AB=AC,CD、BE分别为△ABC的中线,
∴AD=AE.在△ADC和△AEB中,
∴△ADC≌△AEB.
∴∠ACD=∠ABE.
又∵∠AFC=∠AGB=90°,AC=AB,
∴△ACF≌△ABG.
∴AF=AG.
(2)同理可得AF=AG
(3)同理可得AF=AG
(4)等腰三角形的顶点到两腰中线所在的直线的距离相等.
分析:(1)根据AB=AC,CD、BE分别为△ABC的中线,利用SAS求证△ADC≌△AEB.再利用AAS求证△ACF≌△ABG即可.
(2)由(1)可得当∠A=90°时,其余条件不变,猜想正确.
(3)由(1)可得当∠A=90°时,其余条件不变,猜想正确,
(4)由前3个猜想成立.可得出结论等腰三角形的顶点到两腰中线所在的直线的距离相等.
点评:此题主要考查等腰三角形的性质和全等三角形的判定与性质等知识点,难度不大,但步骤繁琐,属于基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案