如图,抛物线y=ax2+bx+c与x轴交于A(x1,0)、B(x2,0)两点,与y轴交于C点,对称轴与抛物线相交于点P,与直线BC相交于点M,连接PB.已知x1、x2
恰是方程
的两根,且sin∠OBC=
.
![]()
1.求该抛物线的解析式;
2.抛物线上是否存在一点Q,使△QMB与△PMB的面积相等,若存在,求点Q的坐标;若不存在,说明理由
3.在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等,若存在,直接写出点R的坐标;若不存在,说明理由.
1.由已知,可求:OA=1,OB=3,OC=3.
设抛物线的函数关系式为y=a(x+1)(a-3).
∵抛物线与y轴交于点C (0,3),
∴3=a×1×(-3),
解得:a=-1.
所以二次函数式为y=-x2+2x+3.…………………………(3分)
2.由y=-x2+2x+3=-(x-1)2+4,
则顶点P(1,4).共分两种情况:
①由B、C两点坐标可知,直线BC解析式为y=-x+3.
设过点P与直线BC平行的直线为:y=-x+b,
将点P(1,4)代入,得y=-x+5.
则直线BC代入抛物线解析式是否有解,有则存在点Q,
-x2+2x+3=-x+5,
解得x=1或x=2.
代入直线则得点(1,4)或(2,3).
已知点P(1,4),
所以点Q(2,3).…………(6分)
②由对称轴及直线BC解析式可知M(1,2),PM=2,
设过P′(1,0)且与BC平行的直线为y=-x+c,
将P′代入,得y=-x+1.
联立
,
解得
或
.
∴Q(2,3)或Q(
,
)或Q(
,
).
………………………………………………(10分)
3.由题意求得直线BC代入x=1,
![]()
则y=2.
∴M(1,2).由点M,P的坐标可知:
点R存在,即过点M平行于x轴的直线,
则代入y=2,x2-2x-1=0,
解得x1=1-
(在对称轴的左侧,舍去),
x2=
,
即点R(
,2).…………………(13分)
解析:(1)利用抛物线与两轴的交点坐标求出抛物线的解析式;
(2)根据三角形面积相等就是同底等高,分两种情况讨论;
(3)与(2)相同。
科目:初中数学 来源:2008年江西省南昌市初中毕业升学统一考试、数学试卷 题型:044
如图,抛物线y1=-ax2-ax+1经过点P
,且与抛物线y2=ax2-ax-1,相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D两点,试问当x为何值时,线段CD有最大值?其最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
(本题满分8分)如图,抛物线y=ax-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
![]()
1.⑴求a的值和该抛物线顶点P的坐标.
2.⑵求DPAB的面积;
3.⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届江苏省兴化市九年级上学期期末四校联考数学卷 题型:解答题
(本题满分8分)如图,抛物线y=ax-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.![]()
【小题1】⑴求a的值和该抛物线顶点P的坐标.
【小题2】⑵求DPAB的面积;
【小题3】⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源:2011-2012学年江苏省兴化市九年级上学期期末四校联考数学卷 题型:解答题
(本题满分8分)如图,抛物线y=ax-5x+4a与x轴相交于点A、B,且经过点C(5,4).该抛物线顶点为P.
![]()
1.⑴求a的值和该抛物线顶点P的坐标.
2.⑵求DPAB的面积;
3.⑶若将该抛物线先向左平移4个单位,再向上平移2个单位,求出平移后抛物线的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com