精英家教网 > 初中数学 > 题目详情

如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.
求:(1)∠MAN的大小;
(2)△MAN面积的最小值.

解:(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,
∠1=∠2,∠NAL=∠DAB=90°
又∵MN=2-CN-CM=DN+BM=BL+BM=ML
∴△AMN≌△AML
∴∠MAN=∠MAL=45°

(2)设CM=x,CN=y,MN=z,
则x2+y2=z2
∵x+y+z=2,则x=2-y-z
于是(2-y-z)2+y2=z2
整理得2y2+(2z-4)y+(4-4z)=0
∴△=4(z-2)2-32(1-z)≥0
即(z+2+)(z+2-)≥0
又∵z>0
∴z≥-2当且仅当x=y=2-时等号成立
此时S△AMN=S△AML=ML•AB=z
因此,当z=-2,x=y=2-时,S△AMN取到最小值为-1.
分析:(1)延长CB至L,使BL=DN,则Rt△ABL≌Rt△AND,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°;
(2)设CM=x,CN=y,MN=z,根据x2+y2=z2和x+y+z=2,整理根据△=4(z-2)2-32(1-z)≥0可以解题.
点评:本题考查了勾股定理在直角三角形中的运用,考查了正方形各边长相等,各内角为直角的性质,本题中求证△AMN≌△AML是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD中,E为AB中点,F为AD中点,DE、CF交于O点,求证:DE⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODC交OC于点E,若AB=2,则线段OE的长为(  )
A、
2
2
B、
2
2
3
C、2-
2
D、
2
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示的正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△AB1C1,再作出△AB1C1关于原点O成中心对称的△A1B2C2.(要求:用直尺作出图形即可,不用保留作图痕迹,不写作法.)
(2)点B1的坐标是
(-2,-3)
(-2,-3)
,点C2的坐标是
(3,1)
(3,1)

(3)求△ABC绕点A逆时针旋转90°的过程中,线段AB扫过的面积.

查看答案和解析>>

同步练习册答案