精英家教网 > 初中数学 > 题目详情

【题目】在一节数学活动课上,王老师将本班学生身高数据(精确到1厘米)出示给大家,要求同学们各自独立绘制一幅频数分布直方图,甲绘制的如图①所示,乙绘制的如图②所示,经王老师批改,甲绘制的图是正确的,乙在数据整理与绘图过程中均有个别错误.

(1)写出乙同学在数据整理或绘图过程中的错误(写出一个即可);

(2)甲同学在数据整理后若用扇形统计图表示,则159.5﹣164.5这一部分所对应的扇形圆心角的度数为   

(3)该班学生的身高数据的中位数是   

(4)假设身高在169.5﹣174.5范围的5名同学中,有2名女同学,班主任老师想在这5名同学中选出2名同学作为本班的正、副旗手,那么恰好选中一名男同学和一名女同学当正,副旗手的概率是多少?

【答案】(1)见解析;(2)120°;(3)160161;(4)

【解析】整体分析

(1)对比图①与图②,找出图中与图不相同的地方;(2)159.5﹣164.5这一部分的人数占全班人数的比乘以360°;(3)身高排序为第30和第31的两名同学的身高的平均数;(4)用树状图法求概率.

解:(1)对比甲乙的直方图可得:乙在整理数据时漏了一个数据,它在169.5﹣﹣174.5内;(答案不唯一)

(2)根据频数分布直方图中每一组内的频数总和等于总数据个数;

将甲的数据相加可得10+15+20+10+5=60;

由题意可知159.5﹣164.5这一部分所对应的人数为20人,

所以这一部分所对应的扇形圆心角的度数为20÷60×360=120°,

故答案为:120°;

(3)根据中位数的求法,将甲的数据从小到大依次排列,

可得第3031名的数据在第3组,由乙的数据知小于162的数据有36个,则这两个只能是160161.

故答案为:160161;

(4)列树状图得:

P(一男一女)==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】写出命题:“等腰三角形两腰上的高相等”的逆命题,并证明其逆命题是真命题.(要求写出已知、求证和证明过程)

.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为(  )

A. B. 2 C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).

(1)图2中的阴影部分的面积为  

(2)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是 

(3)根据(2)中的结论,若x+y=7,xy=,则x﹣y=  

(4)实际上通过计算图形的面积可以探求相应的等式.根据图3,写出一个因式分解的等式 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是( )

A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球

(1)请画树状图,列举所有可能出现的结果

(2)请直接写出事件取出至少一个红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A02)在y轴上,点Bx轴上,作∠BAC90°,并使ABAC

1)如图1,若点B的坐标为(﹣30),求点C的坐标.

2)如图2,若点B的坐标为(﹣40),连接BCy轴于点DACx轴于点E,连接DE,求证:BEAD+DE

3)在(1)的条件下,如图3F为(40),作∠FAG90°,并使AFAG,连接GCy轴于点H,求点H的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,CD为双曲线的一部分):

(1)分别求出线段AB和曲线CD的函数关系式;

(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?

(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲,乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.

(1)求租用一辆甲型汽车,一辆乙型汽车的费用分别是多少元?

(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.

(3)该商业公司生产的此时令商品每件成本为15元,经过市场调研发现,这种商品在未来20天内的日销量m(件)与时间t(天)的函数关系:m=﹣2t+100;该商品每天的价格y(元/件)与时间t(天)的函数关系为:y=t+20(1t20),其中t取整数;在实际销售的前20天中,该公司决定每销售一件商品就捐赠a元利润(a4)给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润时间t(天)的增大而增大(含20天的日销售利润和第19天的日销售利润相等的情况),求a的最小值.

查看答案和解析>>

同步练习册答案