【题目】设二次函数的图象为C1.二次函数的图象与C1关于y轴对称.
(1)求二次函数的解析式;
(2)当≤0时,直接写出的取值范围;
(3)设二次函数图象的顶点为点A,与y轴的交点为点B,一次函数( k,m为常数,k≠0)的图象经过A,B两点,当时,直接写出x的取值范围.
【答案】(1)y2=x2+4x+3;(2)-1≤y2≤3;(3)-2<x<0.
【解析】
试题分析:分析:(1)求出抛物线C1的顶点坐标,再根据关于y轴对称的点的横坐标互为相反数,纵坐标相同求出抛物线C2的顶点坐标,然后利用顶点式形式写出即可;
(2)作出函数图象,然后根据图形写出y2的取值范围即可;
(3)根据函数图象写出抛物线C2在直线AB的下方部分的x的取值范围即可.
试题解析:(1)二次函数y1=x2-4x+3=(x-2)2-1图象的顶点(2,-1),
关于y轴的对称点坐标为(-2,-1)
所以,所求的二次函数的解析式为y2=(x+2)2-1,
即y2=x2+4x+3;
(2)如图,-3<x≤0时,y2的取值范围为:-1≤y2≤3;
(3)y2<y3时,-2<x<0.
科目:初中数学 来源: 题型:
【题目】一天晚上,身高1.6米的小明站在路灯下,发现自己的影子恰好是4块地砖的长(每块地砖为边长0.5米的正方形).当他沿着影子的方向走了4块地砖时,发现自己的影子恰好是5块地砖的长,根据这个发现,他就算出了路灯的高度,你知道他是怎么算的吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.
(1)求抛物线C2的解析式.
(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.
(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为( )
A. B. C.1 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.
(1)建立如图所示的平面直角坐标系,求抛物线的解析式.
(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,
问:球出手时,他距离地面的高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,有下列结论:①CD=ED②AC+BE=AB ③∠BDE=∠BAC ④AD平分∠CDE ⑤S△ABD∶S△ACD=AB∶AC,其中正确的有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校七年级500名学生身高情况,从中抽取了50名学生进行检测,这50名学生的身高是( )
A.总体B.个体C.样本容量D.总体的一个样本
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC中,BF、CF是角平分线,DE∥BC,分别交AB、AC于点D、E,DE经过点F.结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周长=AB+AC;④BF=CF.其中正确的是______.(填序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com