精英家教网 > 初中数学 > 题目详情
如图,同心⊙O,大⊙O的直径AB=2,小⊙O的直径CD=2,连接AC、AD、BD、BC,AD、CB分别交小⊙O于E、F.
(1)问四边形CEDF是何种特殊四边形?请证明你的结论;
(2)当AC与小⊙O相切时,四边形CEDF是正方形吗?请说明理由.

【答案】分析:(1)四边形CEDF是矩形,理由是由CD是小⊙O的直径,得出∠CFD=∠CED=90°,证出平行四边形ADBC,得出CB∥AD,根据平行线的性质得出∠EDF=90°,即可判断出答案;
(2)在Rt△ACO中,OA=,OC=1,根据勾股定理求出AC,推出CD=AC=2,∠CDE=45°,进一步推出DE=CE,即可推出答案.
解答:解:(1)四边形CEDF是矩形.
证明:∵CD是小⊙O的直径,
∴∠CFD=∠CED=90°,
又∵AB、CD分别是大⊙O、小⊙O的直径,
∴OC=OD,OA=OB,
∴四边形ADBC是平行四边形,
∴CB∥AD,
∴∠CFD+∠EDF=180°,
∴∠EDF=90°,
∴四边形CEDF是矩形.
答:四边形CEDF是矩形.

(2)解:四边形CEDF是正方形.
理由:∵AC是小⊙O的切线,CD是直径,
∴∠ACD=90°,
在Rt△ACO中,OA=,OC=1,AC2+12=5,
∴AC=2,
则CD=AC=2,∠CDE=45°,
∴DE=CE,
∴矩形CEDF是正方形.
答:当AC与小⊙O相切时,四边形CEDF是正方形.
点评:本题主要考查对勾股定理,平行四边形的性质和判定,矩形的判定,正方形的判定,切线的性质,平行线的性质等知识点的理解和掌握,综合运用这些性质进行推理是证此题的关键,题型较好,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

图1是一个机器零件的立体示意图,为了求出这个零件大小两个同心圆柱的半径,陈华用曲尺在大圆柱的背面上画了两条互相垂直的弦AB、BC,如图2所示,其中AB⊥BC,AB与小圆相切于点D,已知量得AB=12cm,BC=5cm,分别求这两个圆的半径.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,同心⊙O,大⊙O的直径AB=2
5
,小⊙O的直径CD=2,连接AC、AD、BD、BC,AD、CB分别交小⊙O于E、F.
(1)问四边形CEDF是何种特殊四边形?请证明你的结论;
(2)当AC与小⊙O相切时,四边形CEDF是正方形吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源:三点一测丛书九年级数学上 题型:047

如图,同心的两个圆O,P为大O外一点,PA切外O于A,PB切内O于B,F为OP的中点,求证AF=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,同心⊙O,大⊙O的直径AB=2数学公式,小⊙O的直径CD=2,连接AC、AD、BD、BC,AD、CB分别交小⊙O于E、F.
(1)问四边形CEDF是何种特殊四边形?请证明你的结论;
(2)当AC与小⊙O相切时,四边形CEDF是正方形吗?请说明理由.

查看答案和解析>>

同步练习册答案