精英家教网 > 初中数学 > 题目详情
已知:关于的方程有两个不相等的实数根.
(1)求的取值范围;
(2)抛物线轴交于两点.若且直线:经过点,求抛物线的函数解析式;
(3)在(2)的条件下,直线:绕着点旋转得到直线,设直线轴交于点,与抛物线交于点不与点重合),当时,求的取值范围.
解:(1)
∵方程有两个不相等的实数根

                
(2)  抛物线中,令,则

解得:     
∴抛物线与轴的交点坐标为
∵直线:经过点
当点坐标为
解得
当点坐标为

解得                 
又∵

∴抛物线的解析式为
(3)设
①当点点的右侧时,

可证
,则
此时,
过点的直线的解析式


求得    
②当点点重合时直线与抛物线只有一个公共点
解得

,求得   
③当点点的左侧时

可证
,则,此时,
,解得
综上所述,当 
(1)方程有两个不等的实数根,则判别式△>0,据此即可得到关于m的不等式求得m的范围;
(2)求得抛物线与x轴的两个交点坐标,经过点,则A可能是两个交点中的任意一个,分两种情况进行讨论,把点的坐标代入直线的解析式,即可求得m的值;
(3)设出M点的坐标,当点M在A点的右侧时,可得据此即可求得M的横坐标,则M的坐标可以得到,代入函数解析式,利用待定系数法即可求得k值;
当点M与A点重合时直线l2与抛物线C只有一个公共点,则两个函数解析式组成的方程组,只有一个解,利用根的判别式即可求解;当点M在A点的左侧时,可证,可以求得M的横坐标,则M的坐标可以得到,代入函数解析式,利用待定系数法即可求得k值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(本题12分)如图,二次函数的图象与x轴交于两个不同的点A(-2,0)、B(4,0),与y轴交于点C(0,3),连结BC、AC,该二次函数图象的对称轴与x轴相交于点D.
(1)求这个二次函数的解析式、点D的坐标及直线BC的函数解析式;
(2)点Q在线段BC上,使得以点Q、D、B为顶点的三角形与△相似,求出点Q的坐标;
(3)在(2)的条件下,若存在点Q,请任选一个Q点求出△外接圆圆心的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数图象的开口方向    ,它与y轴的交点坐标是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的部分对应值如下表:



0
1
3




1
3
1

则下列判断中正确的是
A.抛物线开口向上
B.抛物线与轴交于负半轴
C.当X大于1.5时,Y随着X的增大而减小
D.当=4时,>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=6.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中(不包括A、O),求△APQ的面积S与t之间的函数关系式,并直接写出t的取值范围;
(3)在点E从B向O运动的过程中,完成下面问题:
四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是:_________,点C的坐标是:__________;
(2)设△OMN的面积为S,求S与t的函数关系式;
(3)探求(2)中得到的函数S有没有最大值?若有,求出最大值;若没有,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

将抛物线y1=2x2向右平移2个单位,得到抛物线y2的图象,则y2=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

函数y=-的图象的两个分支分布在第_______象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线在x轴上截得的线段长为       

查看答案和解析>>

同步练习册答案