精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=6.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)求直线AB的解析式;
(2)在点P从O向A运动的过程中(不包括A、O),求△APQ的面积S与t之间的函数关系式,并直接写出t的取值范围;
(3)在点E从B向O运动的过程中,完成下面问题:
四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;
(1)直线AB的解析式为                         (1分)
(2)
                                  (2分)
)                                         (1分)
(3)四边形QBED能成为直角梯形.
①(Ⅰ)当DE∥QB时,
∵DE⊥PQ,
∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由(2)得AP=2AQ,即3-t=2t                                  (2分)
解得t= 1;                                                   (1分)
(Ⅱ)当PQ∥BO时,
∵DE⊥PQ,
∴DE⊥BO,四边形QBED是直角梯形.
此时∠APQ=90°.
由(2)得AQ=2AP,即2(3-t)=t                              (1分)
解得t= 2   
(1)首先由在Rt△AOB中,OA=3,AB=5,求得OB的值,然后利用待定系数法即可求得二次函数的解析式;
(2)过点Q作QF⊥AO于点F,由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得△APQ的面积S与t之间的函数关系式;
(3)分别从DE∥QB与PQ∥BO去分析,借助于相似三角形的性质,即可求得t的值;
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.

(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C.D(C点在D点的左侧),试判断△ABD的形状;
(3)是否存在一点P,使以点P、A.B.D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:关于的方程有两个不相等的实数根.
(1)求的取值范围;
(2)抛物线轴交于两点.若且直线:经过点,求抛物线的函数解析式;
(3)在(2)的条件下,直线:绕着点旋转得到直线,设直线轴交于点,与抛物线交于点不与点重合),当时,求的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

自变量为x的二次函数
(1),求函数值y的最大值与最小值;并分别指出所对应的自变量x的值;
(2)当a变化时,该二次函数图象是否经过定点?若是,请求出定点坐标;若不是,请说明理由;
(3)若该二次函数图象与x轴有两个不同的交点,而且两交点的横坐标均小于-1,求a的取值范围。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA:OB=1:5,OB=OC,△ABC的面积SABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点

(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).

(1)求抛物线的解析式;
(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;
(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线的顶点坐标是          .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线,当自变量取两个不同的数值  时,函数值相等,则当自变量时的函数值与(        )
A.时,函数值相等B.时,函数值相等
C.时,函数值相等D.时,函数值相等

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知抛物线轴的一个交点为,则代数式的值为()
A.2010B.2012 C.2013D.2014

查看答案和解析>>

同步练习册答案