精英家教网 > 初中数学 > 题目详情
(2012•南京)如图,在Rt△ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过点B作BE⊥AC,与BD的垂线DE交于点E.
(1)求证:△ABC≌△BDE;
(2)△BDE可由△ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法).
分析:(1)利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可;
(2)利用垂直平分线的性质可以作出,或者利用四边形性质得出旋转中心即可.
解答:(1)证明:在Rt△ABC中,
∵∠ABC=90°,
∴∠ABE+∠DBE=90°,
∵BE⊥AC,
∴∠ABE+∠A=90°,
∴∠A=∠DBE,
∵DE是BD的垂线,
∴∠D=90°,
在△ABC和△BDE中,
∠A=∠DBE
AB=DB
∠ABC=∠D

∴△ABC≌△BDE(ASA);

(2)作法一:如图①,点O就是所求的旋转中心.

作法二:如图②,点O就是所求的旋转中心.
点评:此题主要考查了旋转变换图形的性质以及全等三角形的证明,正确发现图形中等量关系∠A=∠DBE是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南京)如图,在?ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE=
3.6
3.6
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=
300°
300°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.
(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB=
90
90
°;
②若⊙O的半径是1,AB=
2
,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南京)如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)求证:四边形EFGH是正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积.

查看答案和解析>>

同步练习册答案