精英家教网 > 初中数学 > 题目详情
(2012•南京)如图,在?ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE=
3.6
3.6
cm.
分析:先根据平行四边形的性质得出∠2=∠3,再根据BE=BC,CE=CD,∠1=∠2,∠3=∠D,进而得出∠1=∠2=∠3=∠D,故可得出△BCE∽△CDE,再根据相似三角形的对应边成比例即可得出结论.
解答:解:∵四边形ABCD是平行四边形,AD=10cm,CD=6cm,
∴BC=AD=10cm,AD∥BC,
∴∠2=∠3,
∵BE=BC,CE=CD,
∴BE=BC=10cm,CE=CD=6cm,∠1=∠2,∠3=∠D,
∴∠1=∠2=∠3=∠D,
∴△BCE∽△CDE,
BC
CD
=
CE
DE
,即
10
6
=
6
DE

解得DE=3.6cm.
故答案为:3.6.
点评:本题考查的是相似三角形的判定与性质及平行四边形的性质,根据题意得出△BCE∽△CDE是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4=
300°
300°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.
(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB=
90
90
°;
②若⊙O的半径是1,AB=
2
,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南京)如图,在Rt△ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过点B作BE⊥AC,与BD的垂线DE交于点E.
(1)求证:△ABC≌△BDE;
(2)△BDE可由△ABC旋转得到,利用尺规作出旋转中心O(保留作图痕迹,不写作法).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南京)如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.
(1)求证:四边形EFGH是正方形;
(2)若AD=2,BC=4,求四边形EFGH的面积.

查看答案和解析>>

同步练习册答案