【题目】已知△ABC中,∠A=50°.
(1)如图①,∠ABC、∠ACB的角平分线交于点O,则∠BOC= °.
(2)如图②,∠ABC、∠ACB的三等分线分别对应交于O1、O2,则∠BO2C= °.
(3)如图③,∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1(内部有n﹣1个点),求∠BOn﹣1C(用n的代数式表示).
(4)如图③,已知∠ABC、∠ACB的n等分线分别对应交于O1、O2…On﹣1,若∠BOn﹣1C=60°,求n的值.
【答案】(1)、115°;(2)、;(3)、﹣×130°;(4)、n=13.
【解析】
试题分析:(1)、△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO、CO是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解;(2)、先根据三角形内角和定理求得∠ABC+∠ACB,再根据三等分线的定义求得∠O2BC+∠O2CB,即可求出∠BO2C;
(3)、先根据三角形内角和定理求得∠ABC+∠ACB,再根据n等分线的定义求得∠On﹣1BC+∠On﹣1CB,即可求出∠BOn﹣1C.(4)、依据(3)的结论即可求出n的值.
试题解析:(1)、∵△ABC中,∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,BO、CO是∠ABC,∠ACB的两条角平分线. ∴∠OBC=∠ABC,∠OCB=∠ACB, ∴∠OBC+∠OCB=(∠ABC+∠ACB)=65°,
∴△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=115° (2)、∵点O2是∠ABC与∠ACB的三等分线的交点,
∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=×130°=()°,
∴∠BO2C=180°﹣()°=()°.
(3)、∵点On﹣1是∠ABC与∠ACB的n等分线的交点,
∴∠On﹣1BC+∠On﹣1CB=(∠ABC+∠ACB)=×130°, ∴∠BOn﹣1C=180°﹣×130°;
(4)、∵∠BOn﹣1C=60°, ∴180°﹣×130°=60°,解得n=13.
科目:初中数学 来源: 题型:
【题目】现定义运算“★”,对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是 ( )
A. -1 B. 4 C. -1或4 D. 1或-4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为( )
A. 70cm B. 65cm C. 35cm D. 35cm或65cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).
(1)求反比例函数的解析式;
(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com