精英家教网 > 初中数学 > 题目详情

如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(-3数学公式,O),C(数学公式,O).
(1)求⊙M的半径;
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.

解:(1)如图(一),过M作MT⊥BC于T连BM,
∵BC是⊙O的一条弦,MT是垂直于BC的直径,
∴BT=TC=BC=2
∴BM==4;

(2)如图(二),连接AE,
证明:∵点B,和点C关于y轴对称,所以AM垂直平分BC交BC于D,且点D是坐标的原点,
∴∠ADB=90°,∵CE垂直AB于H,∴∠AHF=90°,
∴点H,B,D,F,四点共圆,∴∠AFH=∠ABC,∠ABC=∠E,∴∠E=∠AFH,
∴AE=AF,
∵CE垂直AB于H,
∴AH说是EF的中线,
∴EH=FH;


(3)由(1)易知,∠BMT=∠BAC=60°,
作直径BG,连CG,则∠BGC=∠BAC=60°,
∵⊙O的半径为4,
∴CG=4.
连AG,
∵∠BCG=90°,
∴CG⊥x轴,
∴CG∥AF,
∵∠BAG=90°,
∴AG⊥AB,
∵CE⊥AB,
∴AG∥CE,
∴四边形AFCG为口,
∴AF=CG=4.
分析:(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;
(2)连接AE,由圆周角定理可得出∠E=∠ABC=∠AFE,再根据在同一个三角形中等角对等边及等腰三角形的性质即可解答;
(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.
点评:本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网己知:如图,⊙D交y轴于A、B,交x轴于C,过点C的直线y=-2
2
x-8
与y轴交于P,D点坐标(0,1),求证:PC是⊙D的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图:⊙M交x轴于A(-
3
,0),B(
3
,0)两点,交y轴于C(3,0)精英家教网,D两点.
(1)求M点的坐标;
(2)P为弧BC上一动点,连接BC,PA,PC,当P点在弧BC上运动时.求证PC+PB=PA.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线交x轴于点A(-2,0),点B(4,0),交y轴于点C(0,4).
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)若直线y=x交抛物线于M,N两点,交抛物线的对称轴于点E,连接BC,EB,EC.试判断△EBC的形状,并加以证明;
(3)设P为直线MN上的动点,过P作PF∥ED交直线MN上方的抛物线于点F.问:在直线MN上是否存在点P,使得以P,E,D,F为顶点的四边形是平行四边形?若存在,请求出点P及相应的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,⊙D交y轴于A、B,交x轴于C,过点C的直线:y=-2
2
x-8
与y轴交于精英家教网P,且D的坐标(0,1).
(1)求点C、点P的坐标;
(2)求证:PC是⊙D的切线;
(3)判断在直线PC上是否存在点E,使得S△EOP=4S△CDO?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(-3
3
,O),C(
3
,O).
(1)求⊙M的半径;
(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.
(3)在(2)的条件下求AF的长.
精英家教网

查看答案和解析>>

同步练习册答案