精英家教网 > 初中数学 > 题目详情
7.已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=-3x+t上.
(1)求点C的坐标;
(2)当y1随着x的增大而增大时,求自变量x的取值范围;
(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2-5n的最小值.

分析 (1)利用y轴上点的坐标性质表示出C点坐标,再利用O,C两点间的距离为3求出即可;
(2)分别利用①若C(0,3),即c=3,以及②若C(0,-3),即c=-3,得出A,B点坐标,进而求出函数解析式,进而得出答案;
(3)利用①若c=3,则y1=-x2-2x+3=-(x+1)2+4,y2=-3x+3,得出y1向左平移n个单位后,则解析式为:y3=-(x+1+n)2+4,进而求出平移后的直线与P有公共点时得出n的取值范围,②若c=-3,则y1=x2-2x-3=(x-1)2-4,y2=-3x-3,y1向左平移n个单位后,则解析式为:y3=(x-1+n)2-4,进而求出平移后的直线与P有公共点时得出n的取值范围,进而利用配方法求出函数最值.

解答 解:(1)令x=0,则y=c,
故C(0,c),
∵OC的距离为3,
∴|c|=3,即c=±3,
∴C(0,3)或(0,-3);

(2)∵x1x2<0,
∴x1,x2异号,
①若C(0,3),即c=3,
把C(0,3)代入y2=-3x+t,则0+t=3,即t=3,
∴y2=-3x+3,
把A(x1,0)代入y2=-3x+3,则-3x1+3=0,
即x1=1,
∴A(1,0),
∵x1,x2异号,x1=1>0,∴x2<0,
∵|x1|+|x2|=4,
∴1-x2=4,
解得:x2=-3,则B(-3,0),
代入y1=ax2+bx+3得,$\left\{\begin{array}{l}{a+b+3=0}\\{9a-3b+3=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$,
∴y1=-x2-2x+3=-(x+1)2+4,
则当x≤-1时,y随x增大而增大.
②若C(0,-3),即c=-3,
把C(0,-3)代入y2=-3x+t,则0+t=-3,即t=-3,
∴y2=-3x-3,
把A(x1,0),代入y2=-3x-3,
则-3x1-3=0,
即x1=-1,
∴A(-1,0),
∵x1,x2异号,x1=-1<0,∴x2>0
∵|x1|+|x2|=4,
∴1+x2=4,
解得:x2=3,则B(3,0),
代入y1=ax2+bx-3得,$\left\{\begin{array}{l}{a-b-3=0}\\{9a+3b-3=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=1}\\{b=-2}\end{array}\right.$,
∴y1=x2-2x-3=(x-1)2-4,
则当x≥1时,y随x增大而增大,
综上所述,若c=3,当y随x增大而增大时,x≤-1;
若c=-3,当y随x增大而增大时,x≥1;

(3)①若c=3,则y1=-x2-2x+3=-(x+1)2+4,y2=-3x+3,
y1向左平移n个单位后,则解析式为:y3=-(x+1+n)2+4,
则当x≤-1-n时,y随x增大而增大,
y2向下平移n个单位后,则解析式为:y4=-3x+3-n,
要使平移后直线与P有公共点,则当x=-1-n,y3≥y4
即-(-1-n+1+n)2+4≥-3(-1-n)+3-n,
解得:n≤-1,
∵n>0,∴n≤-1不符合条件,应舍去;
②若c=-3,则y1=x2-2x-3=(x-1)2-4,y2=-3x-3,
y1向左平移n个单位后,则解析式为:y3=(x-1+n)2-4,
则当x≥1-n时,y随x增大而增大,
y2向下平移n个单位后,则解析式为:y4=-3x-3-n,
要使平移后直线与P有公共点,则当x=1-n,y3≤y4
即(1-n-1+n)2-4≤-3(1-n)-3-n,
解得:n≥1,
综上所述:n≥1,
2n2-5n=2(n-$\frac{5}{4}$)2-$\frac{25}{8}$,
∴当n=$\frac{5}{4}$时,2n2-5n的最小值为:-$\frac{25}{8}$.

点评 此题主要考查了二次函数综合以及二次函数的平移以及二次函数增减性等知识,利用分类讨论得出n的取值范围是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.如图,直线l∥m,将含有45°角的三角形板ABC的直角顶点C放在直线m上,若∠1=20°,则∠2的度数为(  )
A.20°B.25°C.30°D.35°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.抛物线y=ax2+bx+c(a≠0)的顶点C(1,-4),与x轴相交于A(-1,0)、B两点,与y轴相交于点D.
(1)求抛物线的解析式;
(2)如图1,已知点M的坐标是(0,1)在抛物线上找一点N,使以A、B、M、N为顶点的四边形是梯形(写出一个符合条件的点N的坐标即可);
(3)如图2,设过A的直线与抛物线交于点E,与y轴相交于点F,点E的横坐标为2,直线PQ为抛物线的对称轴,点G为直线PQ上的动点.那么x轴上是否存在一点H,使D、G、H、F四点所围成的四边形的周长是否有最小值?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在△ABC中,AB=AC=5,cos∠ABC=$\frac{3}{5}$,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD.
(2)若AB=CF,∠B=30°,求∠D的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.在?ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD:S△COB=4:9或1:9.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.函数y=$\frac{{x}^{2}+2x}{|x|}$的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列运算正确的是(  )
A.(2a23=6a6B.-a2b2•3ab3=-3a2b5
C.$\frac{b}{a-b}$+$\frac{a}{b-a}$=-1D.$\frac{{a}^{2}-1}{a}$•$\frac{1}{a+1}$=-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,将?ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.
(1)求证:四边形BCED′是平行四边形;
(2)若BE平分∠ABC,求证:AB2=AE2+BE2

查看答案和解析>>

同步练习册答案