精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,直线的表达式为AB的坐标分别为

(1,0),(0,2),直线AB与直线相交于点P

(1)求直线AB的表达式;

(2)求点P的坐标;

(3)若直线上存在一点C,使得APC的面积是APO的面积的2倍,直接写出点C的坐标.

【答案】(1) y=-2x+2 ;(2) P的坐标为(2,-2);(3) (3,0),(1,-4).

【解析】(1)用待定系数法求函数的解析式;(2)由两个解析式构成方程组,解方程组可得交点的坐标;(3)点P可能在P的上方或下方,结合图形进行分析计算.

解:(1)设直线AB的表达式为y=kx+b

由点AB的坐标分别为(1,0),(0,2),

可知

解得

所以直线AB的表达式为y=-2x+2.

(2)由题意,

解得

所以点P的坐标为(2,-2).

(3)(3,0),(1,-4).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线.
(2)若 ,求∠E的度数.
(3)连接AD,在(2)的条件下,若CD= ,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1 , x2 , 其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知G、HABC的边AC的三等分点,GEBH,交AB于点E,HFBGBC于点F,延长EG、FH交于点D,连接AD、DC,设ACBD交于点O,求证:四边形ABCD是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一学校(点M)距公路(直线l)的距离(MA)为1km,在公路上距该校2km处有一车站(点N),该校拟在公路上建一个公交车停靠点(点p),以便于本校职工乘车上下班,要求停靠站建在AN之间且到此校与车站的距离相等,请你计算停靠站到车站的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在同一次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.

甲校 93 82 76 77 76 89 89 89 83 87 88 89 84 92 87

89 79 54 88 92 90 87 68 76 94 84 76 69 83 92

乙校 84 63 90 89 71 92 87 92 85 61 79 91 84 92 92

73 76 92 84 57 87 89 88 94 83 85 80 94 72 90

(1)请根据乙校的数据补全条形统计图;

(2)两组样本数据的平均数、中位数、众数如下表所示,请补全表格;

平均数

中位数

众数

甲校

83.4

87

89

乙校

83.2

(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好一些,

请为他们各写出一条可以使用的理由;

甲校: .乙校:

(4)综合来看,可以推断出 校学生的数学学业水平更好一些,理由为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.
(1)求k的值;
(2)当b=﹣2时,求△OCD的面积;
(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=15,AC=20,BC边上高AD=12则BC的长为(

A. 25 B. 7 C. 25或7 D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,∠AOB是直角,∠AOC=40°ON∠AOC的平分线,OM∠BOC的平分线.

1)求∠MON的大小.

2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?

查看答案和解析>>

同步练习册答案