科目:初中数学 来源: 题型:
如图,已知抛物线
与一直线相交于A(-1,0),
C(2,3)两点,与y轴交于点N.其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN + MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作
EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;
(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,已知△ABC在平面直角坐标系中,其中点A、B、C三点的坐标分别为(1,2
),
(-1,0),(3,0),点D为BC中点,P是AC上的一个动点(P与点A、C不重合),连接PB、PD,则△PBD周长的最小值是___ _____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在梯形ABCD中,AB∥DC,∠BCD=90°,且AB=1,
BC=2,tan ∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin ∠BFE的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com