精英家教网 > 初中数学 > 题目详情

将2,数学公式,0,5.34,数学公式,π,(-2)2,-(-3),-22的整数在数轴上表示出来.

解:∵2,,0,5.34,,π,(-2)2=4,-(-3)=3,-22=-4,
∴其中整数为:2,0,(-2)2,-(-3),-22
∴如图所示:

分析:首先将各数能化简得进行化简,进而得出找出整数在数轴上表示即可.
点评:此题主要考查了数轴以及整数的定义等知识,正确化简各数是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:把形如ax2+bx+c的二次三项式(或其中一部分)配成完全平方的形式,叫做配方法.配方的基本形式是完全平方公式的逆运用,即a2±2ab+b2=(a±b)2
例如:x2-2x+4=(x-1)2+
 

x2-2x+4=(x-2)2+
 

x2-2x+4=(
1
2
x-2)2+
3
4
 

以上是x2-4x+4的三种不同形式的配方(即“余项”分别是常数、一次项、二次项--见横线上的部分).根据阅读材料解决以下问题:
(1)仿照上面的例子,写出x2-4x+2三种不同形式的配方;
(2)将a2+ab+b2配方(至少写出两种形式);
(3)已知a2+b2+c2-ab-6b-6c+21=0,求a、b、c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北)一透明的敞口正方体容器ABCD-A′B′C′D′装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示).探究 如图1,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.
解决问题:
(1)CQ与BE的位置关系是
CQ∥BE
CQ∥BE
,BQ的长是
3
3
dm;
(2)求液体的体积;(参考算法:直棱柱体积V=底面积S△BCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=
3
4
,tan37°=
3
4


拓展:在图1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图3或图4是其正面示意图.若液面与棱C′C或CB交于点P,设PC=x,BQ=y.分别就图3和图4求y与x的函数关系式,并写出相应的α的范围.
延伸:在图4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图5,隔板高NM=1dm,BM=CM,NM⊥BC.继续向右缓慢旋转,当α=60°时,通过计算,判断溢出容器的液体能否达到4dm3

查看答案和解析>>

科目:初中数学 来源: 题型:

将一元二次方程2x2-3x-2=0通过配方后所得的方程是
(x-
3
4
2=
25
16
(x-
3
4
2=
25
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为m厘米的大正方形,两块是边长都为n厘米的小正方形,五块是长宽分别是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代数式表示切痕的总长为
(6m+6n)
(6m+6n)
厘米;
(2)若每块小矩形的面积为34.5厘米2,四个正方形的面积和为200厘米2,试求m+n的值.

查看答案和解析>>

同步练习册答案