精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠C=90°,AC=4,BC=6,点D是边BC上一点,且∠CAD=∠B.
(1)求线段CD的长;
(2)求sin∠BAD的值.

解:(1)∵∠C=∠C=90°,∠CAD=∠B,
∴△CAD∽△CBA,

∵AC=4,BC=6,

∴CD=

(2)过D作DE⊥AB,
∵AC=4,CD=
∴AD==
∵S△ACD=•AC•CD=×4×=,S△ACB=×AC•BC=12,
∴S△ADB=12-=
∵AB===2
=×DE×AB,
∴DE==
∴sin∠BAD===
分析:(1)本小题易证△CAD∽△CBA利用相似三角形的性质:对应边的比值相等即可求出线段CD的长;
(2)过D作DE⊥AB,由(1)可知CD的长,利用勾股定理可求出AD的长,根据三角形的面积公式可求出DE,进而求出sin∠BAD的值.
点评:本题考查了相似三角形的判定和性质以及三角形的面积公式运用和锐角三角函数的定义,解题的关键是求出三角形ADB的面积进而求出高线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案