精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠ACB=90°,D是BC边上一点,AD⊥DE,且DE交AB于点E,CF⊥AB交AD于点G,F为垂足,
(1)求证:△ACG∽△DBE;
(2)CD=BD,BC=2AC时,求数学公式

(1)证明:∵在Rt△ABC中,∠ACB=90°,AD⊥DE,CF⊥AB,
∴∠ACF+∠BCF=90°,∠B+∠BCF=90°,∠ADC+∠BDE=90°,∠CAD+∠ADC=90°,
∴∠CAD=∠BDE,∠ACF=∠B,
∴△ACG∽△DBE;

(2)解:过点E作EH⊥BC于点H,
∵∠ACB=90°,
∴EH∥AC,
∴△BEH∽△BAC,
∴EH:AC=BH:BC=DE:AD,
∴AC:BC=EH:BH,
∵CD=BD,BC=2AC,BC=CD+BD,
∴AC=CD=BD,
∴∠ADC=45°,
∵AD⊥DE,
∴∠EDH=45°,
∴DH=EH,
∴EH:BH=AC:BC=1:2,
∴EH=DH=BH,
∴BH:BC==
即EH:AC=1:3,
=
分析:(1)由在Rt△ABC中,∠ACB=90°,AD⊥DE,CF⊥AB,根据等角的余角相等,易证得∠CAD=∠BDE,∠ACF=∠B,继而可证得△ACG∽△DBE;
(2)首先过点E作EH⊥BC于点H,易证得△BEH∽△BAC,然后根据相似三角形的对应边成比例,可得EH:AC=BH:BC=DE:AD,易证得△DEH是等腰直角三角形,则可求得BH:BC=1:3,则可求得答案.
点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案