| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
分析 先根据∠1=∠2得出AC∥DE,再由AC⊥BC可得出DE⊥BC,故∠3+∠2=90°,∠2+∠EDB=90°,故①正确;由AC∥DE可知∠A=∠EDB,∠EDB=∠3,故可得出②正确;∠1=∠2可知AD∥DE,故③正确;由DE⊥AC可知∠2与∠3互余,故④错误;根据CD⊥AB可得出∠2+∠EDB=90°,故可得出∠2+∠A=90°,故⑤错误.
解答 解:∵∠1=∠2,
∴AC∥DE.
∵AC⊥BC,
∴DE⊥BC,
∴∠3+∠2=90°,∠2+∠EDB=90°,故①正确;
∵AC∥DE,
∴∠A=∠EDB,
∵∠EDB=∠3,
∴∠A=∠3,故②正确;
∵∠1=∠2,
∴AD∥DE,故③正确;
∵DE⊥AC,
∴∠2与∠3互余,故④错误;
∵CD⊥AB,
∴∠2+∠EDB=90°,
∵∠EDB=∠A,
∴∠2+∠A=90°,故⑤错误.
故选B.
点评 本题考查的是平行线的判定与性质,熟知垂直的定义及平行线的判定定理是解答此题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 线段AC的长度 | B. | 线段BC的长度 | C. | 线段CD的长度 | D. | 线段BD的长度 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 当AB=AD时,它是菱形 | B. | 当AC=BD时,它是正方形 | ||
| C. | 当∠ABC=90°时,它是矩形 | D. | 当AC⊥BD时,它是菱形 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com