分析 (1)利用交点式假设出函数解析式即可求得出a的值;
(2)根据解析式求得顶点的坐标,根据点C的坐标求得C的对称点C′,进而求得直线C′M的解析式,求得与x轴的交点即为K的坐标;
(3)①由PQ∥OC,得出△APQ∽△AOC,根据相似三角形的对应边成比例得出$\frac{6-3t}{6}$=$\frac{18-8t}{10}$,进而求得t=$\frac{8}{3}$,因为t=$\frac{8}{3}$>2不满足1<t<2;所以不存在PQ∥OC;
②本题要分三种情况进行讨论:
当Q在OC上,P在OA上,即当0≤t≤1时,此时S=$\frac{1}{2}$OP•OQ,由此可得出关于S,t的函数关系式;
当Q在CA上,P在OA上,即当1<t≤2时,此时S=$\frac{1}{2}$OP×Q点的纵坐标.由此可得出关于S,t的函数关系式;
当Q,P都在CA上时,即当2<t<$\frac{24}{11}$相遇时用的时间,此时S=S△AOQ-S△AOP,由此可得出S,t的函数关系式;
综上所述,可得出不同的t的取值范围内,函数的不同表达式.
③根据②的函数即可得出S的最大值.
解答 解:(1)设二次函数的解析式为y=a(x+2)(x-6)(a≠0),
∵图象过点(0,-8),
∴a=$\frac{2}{3}$.
∴二次函数的解析式为y=$\frac{2}{3}$x2-$\frac{8}{3}$x-8;
(2)∵y=$\frac{2}{3}$x2-$\frac{8}{3}$x-8
=$\frac{2}{3}$(x2-4x+4-4)-8
=$\frac{2}{3}$(x-2)2-$\frac{32}{3}$,
∴点M的坐标为(2,-$\frac{32}{3}$).
∵点C的坐标为(0,-8),
∴点C关于x轴对称的点C′的坐标为(0,8).
∴直线C′M的解析式为:y=-$\frac{28}{3}$x+8
令y=0
得-$\frac{28}{3}$x+8=0
解得:x=$\frac{6}{7}$
∴点K的坐标为($\frac{6}{7}$,0);
故答案为:($\frac{6}{7}$,0);
(3)①不存在PQ∥OC,
若PQ∥OC,如图1,则点P,Q分别在线段OA,CA上,
此时,1<t<2
∵PQ∥OC,
∴△APQ∽△AOC
∴$\frac{AP}{AO}$=$\frac{AQ}{AC}$
∵AP=6-3t
AQ=18-8t,
∴$\frac{6-3t}{6}$=$\frac{18-8t}{10}$
∴解得:t=$\frac{8}{3}$,
∵t=$\frac{8}{3}$>2不满足1<t<2;
∴不存在PQ∥OC;![]()
②分情况讨论如下,
情况1:当0≤t≤1时
S=$\frac{1}{2}$OP•OQ=$\frac{1}{2}$×3t×8t=12t2;
情况2:当1<t≤2时
如图2,作QE⊥OA,垂足为E,
S=$\frac{1}{2}$OP•EQ=$\frac{1}{2}$×3t×$\frac{72-32t}{5}$=-$\frac{48}{5}$t2+$\frac{108}{5}$t,
情况3:当2<t<$\frac{24}{11}$ 时
如图3,作OF⊥AC,垂足为F,则OF=$\frac{24}{5}$,
S=$\frac{1}{2}$QP•OF=$\frac{1}{2}$×(24-11t)×$\frac{24}{5}$=-$\frac{132}{5}$t+$\frac{288}{5}$;
③当0≤t≤1时,S=12t2,函数的最大值是12;
当1<t≤2时,S=-$\frac{48}{5}$t2+$\frac{108}{5}$,函数的最大值是$\frac{243}{20}$;
当2<t<$\frac{24}{11}$,S=$\frac{1}{2}$QP•OF=-$\frac{132}{5}$t+$\frac{288}{5}$,函数的最大值为$\frac{24}{5}$;
∴S0的最大值为$\frac{243}{20}$.
点评 此题主要考查了二次函数综合题型、二次函数的图象与性质、一次函数的图象与性质、待定系数法、相似三角形、三角形的面积等知识点,难点在于(3)②分情况讨论,(2)利用对称性判断出点M的位置.
科目:初中数学 来源: 题型:选择题
| A. | 5是25的算术平方根 | B. | $\frac{5}{6}$是$\frac{25}{36}$的一个平方根 | ||
| C. | (-4)2的平方根是-4 | D. | 0的平方根与算术平方根都是0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 平均数 | B. | 中位数 | C. | 众数 | D. | 方差 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com