分析 (1)连结OA,根据切线的性质得到OA⊥AD,再根据圆周角定理得到∠AOC=2∠ABC=90°,然后根据平行线的判定即可得到结论;
(2)设⊙O的半径为R,则OA=R,OE=R-2,AE=2$\sqrt{3}$,在Rt△OAE中根据勾股定理可计算出R=4;设⊙O的半径为R,延长CO交⊙O于F,连接AF,GJ 相似三角形的性质即可得到结论.
解答
(1)证明:连结OA,如图,
∵AD是⊙O的切线,
∴OA⊥AD,
∵∠AOC=2∠ABC=2×45°=90°,
∴OA⊥OC,
∴AD∥OC;
(2)解:设⊙O的半径为R,则OA=R,OE=R-2,AE=2$\sqrt{3}$,
在Rt△OAE中,∵AO2+OE2=AE2,
∴R2+(R-2)2=(2$\sqrt{3}$)2,解得R=1$+\sqrt{5}$,(负值舍去),
延长CO交⊙O于F,连接AF,
则△CEB∽△AEF,
∴$\frac{AE}{CE}=\frac{FE}{BE}$,
∵EF=2R-2=2$\sqrt{5}$,
∴BE=$\frac{2\sqrt{15}}{3}$.
点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点.经过切点且垂直于切线的直线必经过圆心.也考查了圆周角定理、垂径定理和勾股定理.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com